Abstract:
The present disclosure is directed to systems and methods for generating one or more farm-level power curves for a wind farm that can be used to validate an upgrade provided to the wind farm. The method includes operating the wind farm in a first operational mode. Another step includes collecting turbine-level operational data from one or more of the wind turbines in the wind farm during the first operational mode. The method also includes aggregating the turbine-level operational data into a representative farm-level time-series. Another step includes analyzing the operational data collected during the first second operational mode. Thus, the method also includes generating one or more farm-level power curves for the first operational mode based on the analyzed operational data.
Abstract:
A method for controlling a wind farm includes: receiving temperature data associated with a plurality of locations along a sound path between the wind farm and a sound immission point from one or more sensors; estimating a propagation characteristic of the sound path based at least in part on the temperature data; predicting a noise level at the sound immission point based at least in part on the propagation characteristic; determining a control signal for one or more wind turbines in the wind farm based at least in part on the noise level; and using the control signal to control the one or more wind turbines.
Abstract:
The present disclosure is directed to a system and method for determining wake losses of a wind farm. The wind farm includes a plurality of wind turbines. The method includes operating the wind farm in a first operational mode. Another step includes collecting turbine-level data from at least one upstream wind turbines in the wind farm during the first operational mode. The method also includes estimating a freestream farm-level power output for the wind farm during first operational mode based, at least in part, on the collected turbine-level data. A further step includes measuring an actual farm-level power output for the wind farm for the first operational mode. Thus, the method also includes determining the wake losses of the wind farm for the first operational mode as a function of the measured actual farm-level power output and the estimated freestream farm-level power output.
Abstract:
A method for controlling a wind farm includes: receiving temperature data associated with a plurality of locations along a sound path between the wind farm and a sound immission point from one or more sensors; estimating a propagation characteristic of the sound path based at least in part on the temperature data; predicting a noise level at the sound immission point based at least in part on the propagation characteristic; determining a control signal for one or more wind turbines in the wind farm based at least in part on the noise level; and using the control signal to control the one or more wind turbines.
Abstract:
The present disclosure is directed to a system and method for assessing farm-level performance of a wind farm. The method includes operating the wind farm in a first operational mode and identifying one or more pairs of wind turbines having wake interaction. The method also includes generating a pairwise dataset for the wind turbines pairs. Further, the method includes generating a first wake model based on the pairwise dataset and predicting a first farm-level performance parameter based on the first wake model. The method also includes operating the wind farm in a second operational mode and collecting operational data during the second operational mode. Moreover, the method includes predicting a first farm-level performance parameter for the second operational mode using the first wake model and the operational data from the second operational mode. The method further includes determining a second farm-level performance parameter during the second operational mode. Thus, the method includes determining a difference in the farm-level performance of the wind farm as a function of the first and second farm-level performance parameters.
Abstract:
The present disclosure is directed to a system and method for determining wake losses of a wind farm. The wind farm includes a plurality of wind turbines. The method includes operating the wind farm in a first operational mode. Another step includes collecting turbine-level data from at least one upstream wind turbines in the wind farm during the first operational mode. The method also includes estimating a freestream farm-level power output for the wind farm during first operational mode based, at least in part, on the collected turbine-level data. A further step includes measuring an actual farm-level power output for the wind farm for the first operational mode. Thus, the method also includes determining the wake losses of the wind farm for the first operational mode as a function of the measured actual farm-level power output and the estimated freestream farm-level power output.
Abstract:
A system for mitigating wake losses in a windfarm is disclosed. The system may include a first horizontal axis wind turbine configured to rotate in a first direction and a second horizontal axis wind turbine positioned adjacent to the first horizontal axis wind turbine. The second horizontal axis wind turbine configured to rotate in a second direction, wherein the first direction is opposite the second direction.
Abstract:
The present disclosure is directed to a system and method for assessing farm-level performance of a wind farm. The method includes operating the wind farm in a first operational mode and identifying one or more pairs of wind turbines having wake interaction. The method also includes generating a pairwise dataset for the wind turbines pairs. Further, the method includes generating a first wake model based on the pairwise dataset and predicting a first farm-level performance parameter based on the first wake model. The method also includes operating the wind farm in a second operational mode and collecting operational data during the second operational mode. Moreover, the method includes predicting a first farm-level performance parameter for the second operational mode using the first wake model and the operational data from the second operational mode. The method further includes determining a second farm-level performance parameter during the second operational mode. Thus, the method includes determining a difference in the farm-level performance of the wind farm as a function of the first and second farm-level performance parameters.
Abstract:
The present disclosure is directed to systems and methods for generating one or more farm-level power curves for a wind farm that can be used to validate an upgrade provided to the wind farm. The method includes operating the wind farm in a first operational mode. Another step includes collecting turbine-level operational data from one or more of the wind turbines in the wind farm during the first operational mode. The method also includes aggregating the turbine-level operational data into a representative farm-level time-series. Another step includes analyzing the operational data collected during the first second operational mode. Thus, the method also includes generating one or more farm-level power curves for the first operational mode based on the analyzed operational data.