Abstract:
A combustor is configured to operate in a rotating detonation mode and a deflagration mode. The combustor includes a housing and at least one initiator. The housing defines at least one combustion chamber and is configured for a deflagration process to occur within the at least one combustion chamber during operation in the deflagration mode and a rotating detonation process to occur within the at least one combustion chamber during operation in the rotating detonation mode. The at least one initiator is configured to initiate the rotating detonation process within the at least one combustion chamber during operation in the rotating detonation mode and to initiate the deflagration process within the at least one combustion chamber during operation in the deflagration mode.
Abstract:
A turbine engine includes at least one compressor configured to increase pressure of a fluid flow and a primary combustor coupled in flow communication with the at least one compressor. The primary combustor is configured to receive pressurized fluid flow from the at least one compressor. The primary combustor includes a housing defining at least one combustion chamber. The primary combustor is configured for a rotating detonation process to occur within said at least one combustion chamber. The turbine engine also includes at least one supplemental combustor coupled in flow communication with the primary combustor. The at least one supplemental combustor is configured to receive combustion products and perform a combustion operation. The turbine engine further includes a turbine assembly coupled in flow communication with the at least one supplemental combustor. The turbine assembly is configured to receive combustion products from the at least one supplemental combustor.
Abstract:
A premixer for a gas turbine combustor includes a centerbody, a swirler assembly, and a mixing duct. The swirler assembly includes an inner swirler with vanes that rotate air in a first direction and an outer swirler with vanes that rotate air in an opposite direction. The inner swirler vanes and the outer swirler vanes are separated by an annular splitter. The outer swirler vanes define an outlet plane, and the inner swirler vanes each have a trailing edge that is disposed at an acute angle relative to the outlet plane. In one aspect, the inner swirler is axially offset from the outer swirler. The mixing duct may also define fuel passages that deliver fuel to fuel outlets on the downstream end of the mixing duct. The premixer is designed for operation on gaseous fuel or liquid fuel.
Abstract:
A combustor is configured to operate in a rotating detonation mode and a deflagration mode. The combustor includes a housing and at least one initiator. The housing defines at least one combustion chamber and is configured for a deflagration process to occur within the at least one combustion chamber during operation in the deflagration mode and a rotating detonation process to occur within the at least one combustion chamber during operation in the rotating detonation mode. The at least one initiator is configured to initiate the rotating detonation process within the at least one combustion chamber during operation in the rotating detonation mode and to initiate the deflagration process within the at least one combustion chamber during operation in the deflagration mode.
Abstract:
The present disclosure relates to a fuel-air premixer for a turbine system. The fuel-air premixer includes a swirler and a centerbody. The swirler is configured to direct a flow of air through the premixer, and the centerbody is configured to inject fuel into the flow of air. Additionally, the centerbody includes an airfoil shape that reduces and/or substantially eliminates recirculation pockets to prevent autoignition and/or flame holding in a combustion chamber. Accordingly, the turbine system may produce fewer NOx emissions.
Abstract:
A system for premixing fuel and air prior to combustion in a gas turbine engine includes a mixing duct, a centerbody fuel injector located along a central axis of the mixing duct an outer annular swirler located adjacent an upstream end of the mixing duct for swirling air flowing therethrough in a first swirl direction and an inner annular swirler located adjacent of the mixing duct upstream end for swirling air flowing therethrough in a second swirl direction. The system includes a hub separating the inner and outer annular swirlers to permit independent rotation of an air stream therethrough and multiple hollow paths located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler for allowing a flow of sweeping air over the surface of the centerbody fuel injector.
Abstract:
The present disclosure relates to a fuel-air premixer for a turbine system. The fuel-air premixer includes a swirler and a centerbody. The swirler is configured to direct a flow of air through the premixer, and the centerbody is configured to inject fuel into the flow of air. Additionally, the centerbody includes an airfoil shape that reduces and/or substantially eliminates recirculation pockets to prevent autoignition and/or flame holding in a combustion chamber. Accordingly, the turbine system may produce fewer NOx emissions.
Abstract:
A system for premixing fuel and air prior to combustion in a gas turbine engine includes a mixing duct, a centerbody fuel injector located along a central axis of the mixing duct, an outer annular swirler located adjacent an upstream end of the mixing duct for swirling air flowing therethrough in a first swirl direction and an inner annular swirler located adjacent of the mixing duct upstream end for swirling air flowing therethrough in a second swirl direction. The system includes a hub separating said inner and outer annular swirlers to permit independent rotation of an air stream therethrough and multiple hollow paths located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler for allowing a flow of sweeping air over the surface of the centerbody fuel injector.