Abstract:
Embodiments of the present disclosure are directed to a system having components for premixing fuel and air prior to combustion within a combustion chamber. The system includes a plurality of mixing tubes configured to receive and to mix fuel and air. Each mixing tube is paired with a fuel injector, and the fuel injector is positioned axially within a portion of the mixing tube. Fuel is injected from the fuel injector into the respective mixing tube, and air flows radially into each mixing tube through one or more apertures formed on the mixing tube. The fuel and air are mixed within the mixing tube and are deposited into a combustion chamber for combustion.
Abstract:
A system includes a multi-tube fuel nozzle. The multi-tube fuel nozzle includes multiple fuel injectors. Each fuel injector is configured to extend into a respective premixing tube of a plurality of mixing tubes. Each fuel injector includes a body, a fuel passage, and multiple fuel ports. The fuel passage is disposed within the body and extends in a longitudinal direction within a portion of the body. The multiple fuel ports are disposed along the portion of the body and coupled to the fuel passage. A space is disposed between the portion of the body with the fuel ports and the respective premixing tube.
Abstract:
A system includes a multi-tube fuel nozzle. The multi-tube fuel nozzle includes multiple mixing tubes. Each mixing tube includes an annular wall disposed about a central passage and an air inlet region configured to be disposed about a fuel injector extending into the central passage. The central passage extends from an upstream end to a downstream end of the annular wall relative to a direction of flow through the central passage. The air inlet region includes an air entry surface of the annular wall that gradually decreases in diameter in the direction of flow.
Abstract:
A system includes a multi-tube fuel nozzle. The multi-tube fuel nozzle includes an end cover, a first plate, and multiple tubes. The multiple tubes are disposed and supported in a floating arrangement between the end cover and the first plate. Each tube includes a forward end adjacent the end cover and an aft end adjacent the first plate.
Abstract:
Embodiments of the present application can provide systems and methods for a coaxial fuel supply for a micromixer. According to one embodiment, the micromixer may include an elongated base nozzle structure, a number of mixing tubes in communication with the elongated base nozzle structure, and an air inlet configured to supply the plurality of mixing tubes with air. The elongated base nozzle structure may be configured to supply a fuel to the mixing tubes.
Abstract:
A system includes a multi-tube fuel nozzle. The multi-tube fuel nozzle includes multiple tubes. Each tube includes a first end, a second end, and an annular wall disposed about a central passage. The first end is configured to be disposed about a fuel injector. Each tube also includes an air flow conditioner having multiple air ports disposed adjacent the first end. The multiple air ports extend through the wall into the central passage.
Abstract:
Embodiments of the present disclosure are directed to systems and methods for premixing fuel and air prior to combustion within a combustion chamber. The system includes a plurality of fuel injectors and a plurality of mixing tubes, wherein each mixing tube has a first portion for receiving one of the plurality of fuel injectors and a second portion having a mixing chamber that is configured to mix fuel and air. The length of the mixing chamber varies among the plurality of mixing tubes to allow for different mixing times.
Abstract:
A super-telescoping cross-fire tube includes a cross-fire tube including a first portion and a second portion in mating engagement, the cross-fire tube extending from a first end region to a second end region for fluidly connecting a combustor chamber and an adjacent combustor chamber. Also included is an outer shield spaced radially outwardly and surrounding at least a portion of the cross-fire tube. Further included is a spring extending from proximate the first end region to the second end region and disposed between the cross-fire tube and the outer shield, wherein the cross-fire tube is telescopingly moveable between a first position and a second position.
Abstract:
A system includes an end cover for a multi-tube fuel nozzle. The end cover includes a first side, a second side disposed opposite the first side, a plurality of fuel injectors disposed on the first side, and at least one pre-orifice disposed within a passage within the end cover between the first and second sides. The pre-orifice is configured to be removed through the end cover from the second side.
Abstract:
A system includes a multi-tube fuel nozzle. The multi-tube fuel nozzle includes multiple mixing tubes. Each mixing tube includes an annular wall disposed about a central passage and an air inlet region configured to be disposed about a fuel injector extending into the central passage. The central passage extends from an upstream end to a downstream end of the annular wall relative to a direction of flow through the central passage. The air inlet region includes an air entry surface of the annular wall that gradually decreases in diameter in the direction of flow.