Method and apparatus for using generative adversarial networks in magnetic resonance image reconstruction

    公开(公告)号:US11042803B2

    公开(公告)日:2021-06-22

    申请号:US16276135

    申请日:2019-02-14

    Abstract: A method of reconstructing imaging data into a reconstructed image may include training a generative adversarial network (GAN) to reconstruct the imaging data. The GAN may include a generator and a discriminator. Training the GAN may include determining a combined loss by adaptively adjusting an adversarial loss based at least in part on a difference between the adversarial loss and a pixel-wise loss. Additionally, the combined loss may be a combination of the adversarial loss and the pixel-wise loss. Training the GAN may also include updating the generator based at least in part on the combined loss. The method may also include receiving, into the generator, the imaging data and reconstructing, via the generator, the imaging data into a reconstructed image.

    SYSTEM AND METHOD FOR SPARSE IMAGE RECONSTRUCTION

    公开(公告)号:US20190266761A1

    公开(公告)日:2019-08-29

    申请号:US15907797

    申请日:2018-02-28

    Abstract: A method for sparse image reconstruction includes acquiring coil data from a magnetic resonance imaging device. The coil data includes undersampled k-space data corresponding to a subject. The method further includes processing the coil data using an image reconstruction technique to generate an initial undersampled image. The method also includes generating a reconstructed image based on the coil data, the initial undersampled image, and a plurality of iterative blocks of a flared network. A first iterative block of the flared network receives the initial undersampled image. Each of the plurality of iterative blocks includes a data consistency unit and a regularization unit and the iterative blocks are connected both by direct connections from one iterative block to the following iterative block and by a plurality of dense skip connections to non-adjacent iterative blocks. The flared network is based on a neural network trained using previously acquired coil data.

    METHOD AND APPARATUS FOR USING GENERATIVE ADVERSARIAL NETWORKS IN MAGNETIC RESONANCE IMAGE RECONSTRUCTION

    公开(公告)号:US20200265318A1

    公开(公告)日:2020-08-20

    申请号:US16276135

    申请日:2019-02-14

    Abstract: A method of reconstructing imaging data into a reconstructed image may include training a generative adversarial network (GAN) to reconstruct the imaging data. The GAN may include a generator and a discriminator. Training the GAN may include determining a combined loss by adaptively adjusting an adversarial loss based at least in part on a difference between the adversarial loss and a pixel-wise loss. Additionally, the combined loss may be a combination of the adversarial loss and the pixel-wise loss. Training the GAN may also include updating the generator based at least in part on the combined loss. The method may also include receiving, into the generator, the imaging data and reconstructing, via the generator, the imaging data into a reconstructed image.

    System and method for sparse image reconstruction utilizing null data consistency

    公开(公告)号:US11175365B2

    公开(公告)日:2021-11-16

    申请号:US16150079

    申请日:2018-10-02

    Abstract: A method is provided that includes acquiring coil data from a magnetic resonance imaging device. The coil data includes undersampled k-space data. The method includes processing the coil data using an image reconstruction technique to generate an initial undersampled image. The method includes generating a reconstructed image based on the coil data, the initial undersampled image, and multiple iterative blocks of a residual deep-learning image reconstruction network. A first iterative block of the residual deep-learning image reconstruction network receives the initial undersampled image. Each of the multiple iterative blocks includes a data-consistency unit that preserves the fidelity of the coil data in a respective output of a respective iterative block utilizing zeroed data consistency. The initial undersampled image is added to an output of the last iterative block via a residual connection. The residual deep-learning image reconstruction network is a neural network trained using previously acquired coil data.

Patent Agency Ranking