Abstract:
A process for catalytic reforming of hydrocarbons which comprises contacting aliphatic hydrocarbons with steam and a dehydrocyclization catalyst under dehydrocyclization conditions to form a vapor stream containing aromatics and nonaromatics, separating at least a portion of the vapor stream which is compressed, heated, and recycled to the dehydrocyclization reaction to minimize steam diluent requirements for the process.
Abstract:
A mixture of methylethylsulfone and at least one compound from the group including methylethylketone, acetone, and tetrahydrofuran is employed as a selective solvent in extractive distillation process for separation of diolefins from olefins.
Abstract:
A mixture of n-butane and acetone is effectively separated by liquid-liquid extraction or extractive distillation using a sulfolane as the extractive solvent.
Abstract:
A stream containing styrene and mixed xylenes, such as may be recovered from pyrolysis gasoline, is fractionated to obtain a stream containing ortho-xylene and styrene. Styrene is separated from the latter stream by an extraction process which employs succinonitrile as the solvent. Styrene is selectively absorbed by the succinonitrile, and is subsequently recovered from the resulting extract phase.
Abstract:
Hydrocarbons having different degrees of saturation are separated by extractive distillation using selective solvent comprising a mixture of dimethylsulfone, methylethylketone and sulfolane.
Abstract:
A stream comprising isobutylene and n-butenes is processed to effect dimerization of the isobutylene, and the resulting isobutylene dimer is fed to an alkylation step.
Abstract:
In a conventional reactor into which at one end portion there are fed olefin, isoparaffin and HF acid, or other catalysts, and from which an alkylate containing product is passed to a phase separator or settling zone, there is added to the reactor to a downstream portion therein, beyond the original point of entry of the first olefin feed a second portion of olefin feed together with hydrocarbon phase recycled from the phase separator or settling zone.
Abstract:
In a process for dehydrocyclization of C.sub.6 -C.sub.12 alkanes in the presence of steam and a bed of a catalyst containing a Group IIA or IIB metal aluminate and a Group VIII metal, an oxygen containing gas is injected into the catalyst bed. The results of the oxygen injection are the internal generation of heat, a lower required steam to hydrocarbon ratio, and increased yield of aromatics.
Abstract:
A method of alkylating an alkylatable hydrocarbon with different alkylating agents, at different reaction temperatures and in a single reaction zone, in which an alkylatable hydrocarbon is contacted with an acid-type catalyst and at different points in an elongated reaction zone, the reaction zone effluent is separated into a hydrocarbon phase and a catalyst recycle phase and the reaction temperatures of the various alkylating agents are maintained at different temperatures by splitting the recycle catalyst phase into an equal number of streams and adjusting the reaction temperatures by adjusting the temperatures of the recycle catalyst phase streams, the relative proportions of the recycle catalyst phase streams or both. A method of starting-up the process and apparatus for conducting the process are also disclosed.
Abstract:
Butadiene is produced in relatively pure form by an oxidative dehydrogenation process in which a crude butadiene stream comprising butadiene, butylenes, vinyl acetylene and propylene is first extractively distilled with an extractant consisting of a sulfolane/acetone mixture. From a purified stream consisting essentially of butadiene and vinyl acetylene, the vinyl acetylene in a second extractive distillation step is removed using a sulfolane/acetone mixture as the extractant to produce a pure butadiene stream.