摘要:
According to one embodiment, a threat detection system comprising an intrusion protection system (IPS) logic, a virtual execution logic and a reporting logic is shown. The IPS logic is configured to receive a first plurality of objects and analyze the first plurality of objects to identify a second plurality of objects as potential exploits, the second plurality of objects being a subset of the first plurality of objects and being lesser or equal in number to the first plurality of objects. The virtual execution logic including at least one virtual machine configured to process content within each of the second plurality of objects and monitor for anomalous behaviors during the processing that are indicative of exploits to classify that a first subset of the second plurality of objects includes one or more verified exploits. The reporting logic configured to provide a display of exploit information associated with the one or more verified exploits.
摘要:
A threat-aware microvisor may be deployed in a malware detection appliance architecture and execute on a malware detection system (MDS) appliance to provide exploit and malware detection within a network environment. The microvisor may underlie an operating system kernel of the MDS appliance and execute in kernel space of the architecture to control access to kernel resources of the appliance for any operating system process. A type 0 virtual machine monitor may be disposed over the microvisor and execute in user space of the architecture as a pass-through module configured to expose the kernel resources of the appliance to the operating system kernel. One or more hypervisors, e.g., type 1 VMM, may be further disposed over the microvisor and execute in user space of the architecture under control of the microvisor to support execution of one or more guest operating systems inside one or more full virtual machines.
摘要:
A technique verifies a compound software code using a modularized architecture. The compound software code may be divided into smaller components or modules that provide various functions (e.g., services) of the code. A set of properties may be defined for the modules, such that the verification technique may be used to verify that the modules manifest those properties, wherein at least one property may be security related and the remaining properties may be related to the services of the modules. The compound software code is divided into smaller modules to facilitate verification of the properties related to the services provided by the modules. Properties of the modules may be verified in accordance with an enhanced verification procedure to demonstrate that the modules manifest those properties and transform those modules into verified code bases (VCBs). The services of the VCBs may then be combined to provide functionality of the compound software code using well-defined interfaces, such as application programming interfaces (APIs).
摘要:
A method is described that includes receiving an application and generating a representation of the application that describes specific states of the application and specific state transitions of the application. The method further includes identifying a region of interest of the application based on rules and observations of the application's execution. The method further includes determining specific stimuli that will cause one or more state transitions within the application to reach the region of interest. The method further includes enabling one or more monitors within the application's run time environment and applying the stimuli. The method further includes generating monitoring information from the one or more monitors. The method further includes applying rules to the monitoring information to determine a next set of stimuli to be applied to the application in pursuit of determining whether the region of interest corresponds to improperly behaving code.
摘要:
According to one embodiment, a computerized method operates by configuring a virtual machine operating within an electronic device with a first instrumentation for processing of a suspicious object. In response to detecting a type of event during processing of the suspicious object within the virtual machine, the virtual machine is automatically reconfigured with a second instrumentation that is different from the first instrumentation in efforts to achieve reduced configuration time and/or increased effectiveness in exploit detection.
摘要:
A threat detection system is integrated with intrusion protection system (IPS) logic and virtual execution logic is shown. The IPS logic is configured to receive a first plurality of objects and filter the first plurality of objects by identifying a second plurality of objects as suspicious objects. The second plurality of objects is a subset of the first plurality of objects and is lesser or equal in number to the first plurality of objects. The virtual execution logic is configured to automatically verify whether any of the suspicious objects is an exploit. The virtual execution logic comprises at least one virtual machine configured to virtually process content within the suspicious objects and monitor for anomalous behaviors during the virtual processing that are indicative of exploits.
摘要:
An exploit detection system deploys a threat-aware microvisor to facilitate real-time security analysis, including exploit detection and threat intelligence, of an operating system process executing on a node of a network environment. The microvisor may be organized as a main protection domain representative of the operating system process. In response to the process attempting to access a kernel resource for which it does not have permission, a capability violation may be generated at the main protection domain of the microvisor and a micro-virtual machine (VM) may be spawned as a container configured to encapsulate the process. The main protection domain may then be cloned to create a cloned protection domain that is representative of the process and that is bound to the spawned micro-VM. Capabilities of the cloned protection domain may be configured to be more restricted than the capabilities of the main protection domain with respect to access to the kernel resource. The restricted capabilities may be configured to generate more capability violations than those generated by the capabilities of the main protection domain and, in turn, enable further monitoring of the process as it attempts to access the kernel resource.
摘要:
A micro-virtualization architecture deploys a threat-aware microvisor as a module of a virtualization system configured to facilitate real-time security analysis, including exploit detection and threat intelligence, of operating system processes executing in a memory of a node in a network environment. The micro-virtualization architecture organizes the memory as a user space and kernel space, wherein the microvisor executes in the kernel space of the architecture, while the operating system processes, an operating system kernel, a virtual machine monitor (VMM) and its spawned virtual machines (VMs) execute in the user space. Notably, the microvisor executes at the highest privilege level of a central processing unit of the node to virtualize access to kernel resources. The operating system kernel executes under control of the microvisor at a privilege level lower than a highest privilege level of the microvisor. The VMM and its spawned VMs execute at the highest privilege level of the microvisor.
摘要:
According to one embodiment, a method comprises conducting an analysis for anomalous behavior on application software and generating a video of a display output produced by the application software. The video is to be displayed on an electronic device contemporaneously with display of one or more events detected by the analysis being performed on the application software.
摘要:
A method is described that includes receiving an application and generating a representation of the application that describes specific states of the application and specific state transitions of the application. The method further includes identifying a region of interest of the application based on rules and observations of the application's execution. The method further includes determining specific stimuli that will cause one or more state transitions within the application to reach the region of interest. The method further includes enabling one or more monitors within the application's run time environment and applying the stimuli. The method further includes generating monitoring information from the one or more monitors. The method further includes applying rules to the monitoring information to determine a next set of stimuli to be applied to the application in pursuit of determining whether the region of interest corresponds to improperly behaving code.