Abstract:
A field device of measuring- and automation technology, which field device meets requirements for operation in explosion-endangered environments. Safe operation of the field device in explosion-endangered environments is assured by a pluggable connector coupling for electrical coupling of different field device components. An essential feature of the pluggable connector coupling is a sealing element for spatial and gas-tight sealing of a contact region of contacting elements of the pluggable connector coupling from a free volume remaining in the pluggable connector coupling.
Abstract:
A housing module of a field device includes: a housing including a first housing chamber and a second housing chamber separated by a partition wall; measurement/control electronics disposed in the first housing chamber; interface electronics for connecting lines for supplying energy to the field device arranged in the second housing chamber, wherein the housing includes a first wall region to receive the partition wall, the first wall region separated from the partition wall by a gap having a path length, wherein the ratio of a gap width to the path length is less than 0.02; and a securing device for limiting a range of movement of the partition wall toward the second housing chamber, wherein the housing includes a second wall region with a groove extending parallel to a cross-sectional plane of the partition wall, the securing device including an engagement device to engage in the groove.
Abstract:
A field device of measuring- and automation technology, which field device meets requirements for operation in explosion-endangered environments. Safe operation of the field device in explosion-endangered environments is assured by a pluggable connector coupling for electrical coupling of different field device components. An essential feature of the pluggable connector coupling is a sealing element for spatial and gas-tight sealing of a contact region of contacting elements of the pluggable connector coupling from a free volume remaining in the pluggable connector coupling.
Abstract:
A housing module includes a housing including a housing wall, a first housing chamber and a second housing chamber separated by a partition wall, wherein: the partition wall has a through-opening for an electrical feedthrough for connecting measurement/operating electronics to interface electronics; the feedthrough satisfying requirements of an Ex-d standard; the feedthrough having an electrically insulating carrier body and a plurality of electrically conductive connecting devices for providing the electrical connection, which connecting devices extend through holes in the carrier body; the holes each having a first dimension along a hole axis and each having an inner diameter; the connecting devices each having an outer diameter; the carrier body being inserted into the through-opening from a side of the partition wall facing the first housing chamber, and forming a flame arrestor according to the Ex-d standard.
Abstract:
The present disclosure relates to a high-frequency plug connection for high-frequency-based field devices, consisting of plugs and corresponding sockets. The high-frequency plug connection is characterized in that the at least one plug is resiliently enclosed by an enclosure such that this/these plug(s) is/are moveable radially with respect to its/their plugging axis. This has the advantage of reducing the risk of jamming against the enclosure when the plugs are inserted in the corresponding sockets, during fastening of the circuit board substrate on which the sockets are arranged. A modular design of the high-frequency-based field device, and the manufacturability thereof, are simplified as a result.
Abstract:
An interface between a sensor unit and an explosion resistant housing, wherein arranged in the explosion resistant housing is a measurement amplifier. In the interface, which is simply manufacturable and, despite that, meets the requirements of explosion protection, the measurement amplifier is arranged on a plug unit formed in the sensor unit and preferably protruding inwardly into the explosion resistant housing.
Abstract:
A housing module of a field device includes: a housing including a first housing chamber and a second housing chamber separated by a partition wall; measurement/control electronics disposed in the first housing chamber; interface electronics for connecting lines for supplying energy to the field device arranged in the second housing chamber, wherein the housing includes a first wall region to receive the partition wall, the first wall region separated from the partition wall by a gap having a path length, wherein the ratio of a gap width to the path length is less than 0.02; and a securing device for limiting a range of movement of the partition wall toward the second housing chamber, wherein the housing includes a second wall region with a groove extending parallel to a cross-sectional plane of the partition wall, the securing device including an engagement device to engage in the groove.
Abstract:
A housing module includes a housing including a housing wall, a first housing chamber and a second housing chamber separated by a partition wall, wherein: the partition wall has a through-opening for an electrical feedthrough for connecting measurement/operating electronics to interface electronics; the feedthrough satisfying requirements of an Ex-d standard; the feedthrough having an electrically insulating carrier body and a plurality of electrically conductive connecting devices for providing the electrical connection, which connecting devices extend through holes in the carrier body; the holes each having a first dimension along a hole axis and each having an inner diameter; the connecting devices each having an outer diameter; the carrier body being inserted into the through-opening from a side of the partition wall facing the first housing chamber, and forming a flame arrestor according to the Ex-d standard.
Abstract:
An interface between a sensor unit and an explosion resistant housing, wherein arranged in the explosion resistant housing is a measurement amplifier. In the interface, which is simply manufacturable and, despite that, meets the requirements of explosion protection, the measurement amplifier is arranged on a plug unit formed in the sensor unit and preferably protruding inwardly into the explosion resistant housing.