Abstract:
An apparatus and method for detecting a deception signal in a global navigation satellite receiver is disclosed, the apparatus for detecting the deception signal in the global navigation satellite receiver including an identifier to identify output data output from a global navigation satellite receiver receiving an input of a global navigation satellite signal, and a determiner to determine whether the global navigation satellite signal is a deception signal and a normal signal.
Abstract:
In a global navigation satellite system, a spoofing signal received at a first point in time is processed to generate measurement data including a carrier phase value, and characteristics of a spoofing signal corresponding to a second point in time at which an anti-spoofing signal is to be generated are predicted on the basis of the measurement data at the first point in time. An anti-spoofing signal is generated on the basis of the predicted characteristics of the spoofing signal.
Abstract:
An apparatus for receiving a navigation signal receives a plurality of navigation signals having different available frequency bandwidths, selects a navigation signal in a band in which signal disturbance does not occur among the plurality of navigation signals, and calculates a navigation solution.
Abstract:
A hybrid direction apparatus and method that rapidly and accurately detects a direction of a radio signal source based on a direction detecting scheme by comparing an amplitude or signal strength, a virtual Doppler scheme, a phase difference comparison scheme while removing an ambiguity based on an amplitude or signal strength scheme, and identify a direction relatively precisely based on a phase difference scheme using only two antennas. Also, an arrival direction of a relative radio wave when an arrival direction of a radio wave is vertical to a single rotating axis may be precisely identified by mounting a directional antenna and a phase comparison antenna on the single rotating axis, and rotating the two antennas.
Abstract:
Disclosed is a hybrid direction detection apparatus and method that may perform a precise direction detection through a one-time rotation of a log period (LP) antenna and a one-time phase difference measurement of a dipole antenna and may remove an ambiguity error of the LP antenna by two dipole antennas spaced apart by a distance of about 0.5λ by finding an approximate direction using the LP antenna that is a directional antenna, by measuring a phase difference between arrival waves using two baselines including two dipole antenna in the corresponding direction, and thereby precisely finding a final direction.
Abstract:
There are provided a method and apparatus for detecting the transmission locations of radio waves transmitted from multiple radio resources. The method of detecting the transmission locations of radio waves includes: calculating a plurality of direction angles indicating directions of a plurality of radio sources based on a plurality of measuring locations, and detecting a plurality of intersections of lines extending in directions made by the direction angles from the plurality of measuring locations; and selecting real locations of the radio sources from among the intersections using signal intensities of radio waves transmitted from the plurality of radio sources and wave attenuation based on distances from the plurality of measuring locations to the intersections
Abstract:
The apparatus includes a first frequency conversion unit that converts a radio frequency (RF) signal of a first satellite into an intermediate frequency (IF) signal, a signal processing unit that acquires signal processing information by performing signal tracking with respect to the converted IF signal, a jamming determination unit that determines whether a jamming signal is generated based on the acquired signal processing information, and a signal complex processing unit that performs signal processing with respect to an RF signal of a second satellite based on the signal processing information to thereby generate a navigation message of the first satellite when the jamming signal is generated. Accordingly, a Global Positioning System (GPS) receiver that is installed in a fixed point may acquire stable visual information even in an environment in which a jamming signal is generated.
Abstract:
A location estimating apparatus according to an exemplary embodiment of the present invention is a location estimating apparatus which estimates a position of an electronic apparatus, including a distance calculating unit which calculates a distance from an AP using a strength (RSSI) of an AP signal which is received from the AP; an azimuth calculating unit which calculates an azimuth of the AP with respect to a reference direction using an entrance angle of the AP signal; a position information acquiring unit which acquires position information of the AP from the AP signal; a correction information generating unit which generates correction information based on detection information for movement of the electronic apparatus; and a position information generating unit which generates position information of the electronic apparatus using the distance from the AP and the azimuth based on the position information of the AP and corrects the position information of the electronic apparatus using the correction information.
Abstract:
A system and method for detecting broadband global positioning system (GPS) jamming is provided, the system including a local oscillator maintainer to maintain a plurality of local oscillators, a frequency band selector to select a frequency band in which jamming is to be detected, in response to receipt of a radio frequency (RF) signal, an oscillating signal output unit to allow an oscillating signal to be output from a local oscillator identified based on the selected frequency band, among the plurality of local oscillators, and an intermediate frequency (IF) signal generator to generate an IF signal using the RF signal and the oscillating signal.
Abstract:
A global positioning system (GPS) jamming signal receiver and a GPS jamming signal receiving method are provided. The GPS jamming signal receiver may include a sample data generator to generate a sample data signal with respect to a signal received through an GPS antenna; a jamming signal determiner to determine a jamming state of a GPS jamming signal using the sample data signal and a navigation processing result value of the sample data; and a transmission direction angle calculator to determine a phase difference value of the GPS jamming signal according to the determination result and to calculate a transmission direction angle of the GPS jamming signal.