Abstract:
Provided are a data processing apparatus and method for merging and processing deterministic knowledge and non-deterministic knowledge. The data processing apparatus and method may efficiently process various real-time and large-scale data to convert the data into knowledge by merging and processing non-deterministic knowledge and also deterministic knowledge perceived by an expert. Thus, it is possible to adaptively operate in accordance with a dynamically changing application service environment by converting a conversion rule for converting collected data generated from an application service system into semantic data, a context awareness rule for perceiving context information from given information, and a user query for searching for knowledge information into knowledge and gradually augmenting the knowledge information in accordance with an application service environment.
Abstract:
Provided are a self-learning system and method for automatically performing machine learning (ML). The self-learning system includes a memory configured to store an ML knowledge database (DB) in which ML knowledge is stored and a program for automatically performing ML based on request information of a user, and a processor configured to execute the program stored in the memory. Here, when executing the program, the processor creates or recommends at least one workflow corresponding to the request information of the user based on the ML knowledge stored in the ML knowledge DB and generates an execution code for performing the created or recommended workflow.
Abstract:
Provided is a data meta-scaling method. The data meta-scaling method optimizes an abbreviation criterion for abbreviating data through continuous knowledge augmentation in various dimensions which enable expression of data in a process of performing machine learning.
Abstract:
A tag of an apparatus for simultaneously identifying massive tags according to the present invention may include an analog circuit unit to communicate with a reader through an analog signal and to receive energy via magnetic coupling with the reader. Further, the tag may include a digital circuit unit to be supplied with power from the analog circuit unit. The digital circuit unit may support a sleep mode for the tag to stand by in a low power state after transmitting an identifier (ID) to the reader and a wait mode for controlling random access to the reader.
Abstract:
Provided are an apparatus and method for detecting an anomaly in a plant pipe using multiple meta-learning. When a multi-sensor data stream about a plant pipe is received, each of a plurality of meta-learning modules for processing different packet section ranges, extracts one or more preset types of features from sensor data of packet section ranges set according to trend from an arbitrary reception time point, generates 2D image features of the features according to multi-sensor-specific times, generates 3D volume features by accumulating the 2D image features in a depth direction according to multiple sensors, and learns the 3D volume features in parallel through multi-sensor-specific learning modules. Results of the learning of the meta-learning modules are aggregated, and it is determined whether there is an anomaly in a plant pipe according to a learning result selected based on an optimal combination of multiple features, multiple sensors, and multiple packet sections.