Abstract:
An optical system for hologram displays is disclosed. According to an embodiment of a present disclosure, the optical system comprising a polarizing beam splitter for reflecting a light wave when the light wave is horizontally polarized or transmitting a light wave when the light wave is vertically polarized, a second quarter wave plate, a half mirror, and a first quarter wave plate, sequentially arranged in a first direction from the polarizing beam splitter, a third quarter wave plate and a first mirror, sequentially arranged in a second direction from the polarizing beam splitter, a fourth quarter wave plate and a second mirror, sequentially arranged in a third direction from the polarizing beam splitter, which is a direction opposite to the second direction and a reflective polarizer arranged in a fourth direction from the polarizing beam splitter.
Abstract:
Provided is a holographic display apparatus including a motor configured to synchronize with a hologram transmitted based on user's point of view and to rotate; a spatial light modulator configured to load hologram data generated based on the user's point of view in a fixed position state and to perform a light modulation; a mirror configured to provide the hologram which is light-modulated by the spatial light modulator according to the user's point of view during the rotation by rotation operation of the motor; and a hologram correction unit configured to compensate a rotation error between the fixed spatial light modulator and the rotating mirror and to provide a corrected hologram data to the spatial light modulator.
Abstract:
A holographic display apparatus and method using a directional backlight unit (BLU) are provided. The holographic display apparatus may include a BLU configured to control light to be incident on a spatial light modulator (SLM) using a plurality of mirrors, and the SLM configured to modulate the incident light based on image information and to display a holographic image.
Abstract:
Provided is a method and an apparatus for correcting a distortion of a three-dimensional (3D) hologram, in which the method is performed by the apparatus and includes generating a sliced two-dimensional (2D) section of a hologram by slicing the hologram while performing translation in an optical axis direction, obtaining a sharp sliced image of the hologram from a sequence of images of generated sliced 2D sections using a focusing function of a camera, and analyzing a distortion of the obtained sliced image, and using such a method and apparatus may enable correction of a distortion of a 3D hologram independently from a display structure.
Abstract:
Provided are an apparatus and a method for displaying a hologram image based on pupil tracking, wherein a hologram image display apparatus includes a location determiner to determine a location of a user using a captured image of the user and a hologram information reconstructor to reconstruct first hologram information as second hologram information optimized for the location of the user to reproduce the hologram image.
Abstract:
Provided are an apparatus and a method for displaying a hologram image based on pupil tracking, wherein a hologram image display apparatus includes a location determiner to determine a location of a user using a captured image of the user and a hologram information reconstructor to reconstruct first hologram information as second hologram information optimized for the location of the user to reproduce the hologram image.
Abstract:
A method and apparatus for correcting a distortion of a holographic display. The method includes tracking a location of a viewing window by tracking a location of a pupil of a user and calculating a central location of the viewing window, generating a wavefront aberration by determining an object point and an image point based on a location of a light source and the central location of the viewing window and using ray tracing, and calculating a complex aberration light field using the generated wavefront aberration. Thus, a quality of a holographically reproduced image in a viewing window-based holographic display may be improved.
Abstract:
Provided is a hologram projection apparatus using an aspheric mirror, the apparatus including a spatial light modulator (SLM), a first mirror, a motor, and a second mirror, wherein the first mirror is configured to reflect modulated light output by the SLM, the motor is configured to rotate the first mirror, the second mirror is configured to reflect the modulated light reflected from the rotated first mirror, and the modulated light reflected from the second mirror, based on a degree of rotation of the first mirror, forms a consecutive viewing window in a horizontal direction.
Abstract:
Disclosed herein are a holographic optical system structure and a holographic display method. In particular, disclosed herein are a holographic optical system and a holographic display method that can be efficiently applied when using a spatial light modulator (SLM). The holographic display apparatus includes a spatial light modulator (SLM) configured to reproduce a hologram, and an optical system configured to perform Fourier transform with respect to the hologram of the SLM using a pair of first and second lenses, the first and second lenses being confocal. A Fourier plane which is a display reference image plane is positioned in the same plane space as the second lens.
Abstract:
In the present invention, by providing a hologram displaying apparatus including a light source configured to emit input light, a spatial light modulator configured to modulate the input light into diffracted light, and a plurality of noise filtering elements configured to remove optical noise components from the diffracted light modulated by the spatial light modulator, and display a hologram, an optical path of a light source for displaying the hologram can be drastically reduced while effectively performing spatial filtering.