Abstract:
A single-photon detection method and apparatus. The single-photon detection method detects a single photon using a single-photon detection apparatus, and includes generating an output signal through a photon detector by receiving a light signal as an input, generating a negative voltage comparison result through a negative voltage comparator by receiving the output signal as an input, and generating a photon detection result based on the negative voltage comparison result.
Abstract:
An authentication apparatus and method for quantum cryptography communication. The quantum cryptography communication authentication method is performed using quantum cryptography communication authentication apparatuses, and includes transmitting, by a first quantum cryptography communication authentication apparatus, a quantum state to a second quantum cryptography communication authentication apparatus by selecting a first basis, and measuring, by the second quantum cryptography communication authentication apparatus, the quantum state by selecting a second basis, and performing, by the first quantum cryptography communication authentication apparatus and the second quantum cryptography communication authentication apparatus, authentication by revealing the first basis and the second basis and by comparing sifted keys generated from a common basis between the first basis and the second basis with each other.
Abstract:
An apparatus and method for converting a random binary sequence into a random integer is provided. The present invention converts a random binary sequence into a random integer, and determines whether the corresponding random integer falls within a preset integer interval. Further, if it is determined that the random integer generated from the random binary sequence does not fall within the preset integer interval, the present invention repeatedly updates a random binary sequence until a random integer falling within the corresponding integer interval is obtained, thus outputting uniformly distributed random integers which fall within the preset integer interval.
Abstract:
A quantum direct communication with user authentication and an apparatus using the same. The quantum direct communication method includes performing verification of security of a quantum channel using a preset channel verification probability and a quantum state source generated by a receiver of quantum direct communication, performing user authentication using one or more of a preset user authentication probability, the quantum state source, and an authentication key shared between the receiver and a sender, stopping quantum direct communication and resetting the quantum channel when the verification of security of the quantum channel fails, and stopping quantum direct communication when the user authentication fails.
Abstract:
An apparatus and method for multi-user quantum key distribution. The method for multi-user quantum key distribution is performed using a multi-user quantum key distribution apparatus and a quantum key client device, and includes generating, by the multi-user quantum key distribution apparatus, transmission qubit pairs based on a key bit string of a shared key to be distributed to the quantum key client device, measuring, by the quantum key client device, the transmission qubit pairs, received from the multi-user quantum key distribution apparatus through a quantum channel, based on a measurement basis, verifying security of the quantum channel using the transmission qubit pairs, and if the security has been verified, decoding qubit measurement values of the transmission qubit pairs into the shared key.
Abstract:
An encryption apparatus and method that provide a mobile fast block cipher algorithm that supports low-power encryption. The encryption apparatus includes a user interface unit, a key scheduler unit, an initial conversion unit, a round function processing unit, and a final conversion unit. The user interface unit receives plain text to be encrypted and a master key. The key scheduler unit generates a round key from the master key. The initial conversion unit generates initial round function values from the plain text. The round function processing unit repeatedly processes a round function using the round key and the initial round function values. The final conversion unit generates ciphertext from the resulting values of the round function processed in a final round by the round function processing unit.
Abstract:
An operation apparatus includes a message expansion unit, a state data initiation unit, a state data generation unit, and a chain variable update unit. The message expansion unit generates a plurality of expanded messages using a message. The state data initiation unit generates the initial value of state data using chain variable data. The state data generation unit generates the final value of the state data by iterating a combination function and a step function using the state data and the plurality of expanded messages. The chain variable update unit updates the chain variable data using the state data of the final value.
Abstract:
An apparatus and method for providing a Feistel-based variable length block cipher, which are configured to when plaintext having a certain bit length is encrypted, generate ciphertext having the same bit length as plaintext, and to decrypt ciphertext into plaintext having the same bit length. The apparatus includes an encryption/decryption key generation unit for generating a number of encryption/decryption keys corresponding to a preset number of rounds, based on a secret key, the length of the secret key, the length of plaintext, and a round constant; an encryption/decryption tweak generation unit for generating an encryption/decryption tweak based on a tweak, a length of tweak, and the length of plaintext; and a ciphertext output unit for outputting ciphertext having length identical to that of plaintext, based on plaintext, the length of the plaintext, the length of the secret key, the encryption/decryption keys, and the encryption/decryption tweak.
Abstract:
A variable-length block cipher apparatus and method capable of format preserving encryption are provided. An encryption device for a variable-length block cipher apparatus includes an encryption key generation unit configured to generate encryption round keys eRK0, eRK1, . . . , eRKNr using a secret key and the number of rounds Nr, and a ciphertext output unit configured to output ciphertext having a length identical to that of plaintext using the plaintext and the encryption round keys. 7. A decryption device for a variable-length block cipher apparatus includes a decryption key generation unit configured to generate decryption round keys dRK0, dRK1, . . . , dRKNr using a secret key and a number of rounds Nr, and a plaintext restoration unit configured to restore ciphertext into plaintext having a length identical to that of the ciphertext using the ciphertext and the decryption round keys.
Abstract:
An apparatus and method for performing a compression operation in a hash algorithm are provided. The apparatus includes an interface unit, a message extension unit, a chain variable initial conversion unit, a compression function computation unit, and a chain variable final conversion unit. The interface unit receives a message and chain variable data. The message extension unit generates a plurality of extended messages from the message. The chain variable initial conversion unit converts the chain variable data into initial state data for a compression function. The compression function computation unit repeatedly computes extended message binding and step functions based on the initial state data and the plurality of extended messages, and performs combination with a final extended message, thereby computing final state data. The chain variable final conversion unit generates and outputs chain variable data, into which the chain variable data has been updated, using the final state data.