Abstract:
The disclosure relates to a dual-criterion diagram for designing and assessing the life and strength of high-temperature rotating components and its establishment. In addition, the disclosure relates to a method for designing and assessing the life and strength of high-temperature rotating components based on the dual-criterion diagram for designing and assessing the life and strength of high-temperature rotating components. The advantages of the disclosure include a simple design and assessment process, high operability, and reliable assessment results. The invention is expected to be applied finally to assessment and evaluation of high-cycle fatigue life of rotating components at high temperatures.
Abstract:
The invention relates to a design method of high-temperature nickel-based bolts based on damage tolerance theory, comprising the following steps: S1: acquiring operating parameters for the design; S2: selecting a material for bolts; S3: acquiring mechanical properties of the materials; S4: determining a pretension stress σp of a single bolt; S5: determining the service stress σs under the steady state; S6: determining the number n, the effective cross-section area A and the distribution of bolts; S7: determining a maximum allowable crack dimension; S8: calculating the maximum allowable service stress σth using the crack propagation threshold Kth at the design temperature; S9: comparing the service stress σs and the maximum allowable service stress σth, if σs is smaller than σth, then the bolts are safe in the design life; otherwise, return to step S4 and reduce the pretension stress σp.
Abstract:
The disclosure relates to a dual-criterion diagram for designing and assessing the life and strength of high-temperature rotating components and its establishment. In addition, the disclosure relates to a method for designing and assessing the life and strength of high-temperature rotating components based on the dual-criterion diagram for designing and assessing the life and strength of high-temperature rotating components. The advantages of the disclosure include a simple design and assessment process, high operability, and reliable assessment results. The invention is expected to be applied finally to assessment and evaluation of high-cycle fatigue life of rotating components at high temperatures.
Abstract:
The invention relates to a design method of high-temperature nickel-based bolts based on damage tolerance theory, comprising the following steps: S1: acquiring operating parameters for the design; S2: selecting a material for bolts; S3: acquiring mechanical properties of the materials; S4: determining a pretension stress σp of a single bolt; S5: determining the service stress σs under the steady state; S6: determining the number n, the effective cross-section area A and the distribution of bolts; S7: determining a maximum allowable crack dimension; S8: calculating the maximum allowable service stress σth using the crack propagation threshold Kth at the design temperature; S9: comparing the service stress σs and the maximum allowable service stress σth, if σs is smaller than σth, then the bolts are safe in the design life; otherwise, return to step S4 and reduce the pretension stress σp.
Abstract:
A calibration method for brittle fracture assessment parameters for pressure vessel materials based on the Beremin model includes selecting at least two types of specimens of different constraints, and calculating the fracture toughness values K0 corresponding to 63.2% failure probability for each type of specimens at a same calibration temperature by using the respective fracture toughness data. The method proceeds by obtaining the stress-strain curve of the material at the calibration temperature, generating finite element models for each type of specimens, and calculating the maximum principal stress and element volume of every element at K=K0 in each model. A series of values of m are assumed to compute a group of σu values for each type of specimens, and then m˜σu curves are plotted for each type of specimens. Brittle fracture assessment parameters are then determined for the material according to the coordinates of the intersection of the m˜σu curves.
Abstract:
A creep strength analysis and assessment method includes comparing whether a maximum value of a local strain and a membrane strain are less than a corresponding allowable strain, and if less, determining that a component is safe; otherwise, performing the following steps: performing stress linearization on a path to obtain a local primary membrane stress PL and a local primary bending stress Pb; averaging shear stress components on the path to obtain an average shear stress τm; obtaining a strength limit Smt, a time-independent minimum stress strength value Sm and a temperature- and time-dependent stress strength limit St for a given material, a design lifetime and a design temperature; comparing whether PL, PL+Pb and PL+Pb/Kt are less than Smt, KSm and St; and comparing whether τm is less than 0.6Sm and 0.6St, and if less, the component is safe, otherwise, the component is unsafe.
Abstract:
A creep strength analysis and assessment method includes comparing whether a maximum value of a local strain and a membrane strain are less than a corresponding allowable strain, and if less, determining that a component is safe; otherwise, performing the following steps: performing stress linearization on a path to obtain a local primary membrane stress PL and a local primary bending stress Pb; averaging shear stress components on the path to obtain an average shear stress τm; obtaining a strength limit Smt, a time-independent minimum stress strength value Sm and a temperature- and time-dependent stress strength limit St for a given material, a design lifetime and a design temperature; comparing whether PL, PL+Pb and PL+Pb/Kt are less than Smt, KSm and St; and comparing whether τm is less than 0.6Sm and 0.6St, and if less, the component is safe, otherwise, the component is unsafe.
Abstract:
Disclosed is a method of measurement and determination on fracture toughness of structural materials at high temperature, comprising: preliminary assessing the ductility of a material based on a high-temperature uniaxial tensile test and the fracture characteristic; designing and manufacturing a CT specimen; conducting a monotonic loading fracture test on the CT specimen at high temperature; modifying a load-displacement curve output by a testing machine; determining a passivation coefficient M for the crack of the structural material; reversely recursing instant load-displacement data pairs corresponding to the instant crack length; calculating a J_R crack extension resistance curve of the tensile test; examining the validity of the J_R crack extension resistance curve and the fracture toughness JIC; calculating the fracture toughness per equivalent of the structural material KIC. The present invention overcomes the difficulty of placing an extensometer inside a high-temperature furnace.
Abstract:
A calibration method for brittle fracture assessment parameters for pressure vessel materials based on the Beremin model includes selecting at least two types of specimens of different constraints, and calculating the fracture toughness values K0 corresponding to 63.2% failure probability for each type of specimens at a same calibration temperature by using the respective fracture toughness data. The method proceeds by obtaining the stress-strain curve of the material at the calibration temperature, generating finite element models for each type of specimens, and calculating the maximum principal stress and element volume of every element at K=K0 in each model. A series of values of m are assumed to compute a group of σu values for each type of specimens, and then m˜σu curves are plotted for each type of specimens. Brittle fracture assessment parameters are then determined for the material according to the coordinates of the intersection of the m˜σu curves.