Abstract:
Provided are a treatment apparatus using proton and ultrasound and a method for treating cancer using the same. The treatment apparatus includes a proton generator configured to emit a proton beam to a tumor of a human body, an ultrasound generator configured to emit an ultrasonic beam to the tumor in a direction crossing an emission path of the proton beam, and a sensor configured to measure an acoustic signal generated during the emission of the proton beam.
Abstract:
Provided is an ion beam treatment apparatus including the target. The ion beam treatment apparatus includes a substrate having a first surface and a second surface opposed to the first surface, and including a cone type hole decreasing in width from the first surface to the second surface to pass through the substrate, wherein an inner wall of the substrate defining the cone type hole is formed of a metal, an ion generation thin film attached to the second surface to generate ions by a laser beam incident into the cone type hole through the first surface and strengthen, and a laser that emits a laser beam to generate ions from the ion generation thin film and project the ions onto a tumor portion of a patient. The laser beam incident into the cone type hole is focused by the cone type hole and is strengthened.
Abstract:
The apparatus for an X-ray data generation according to an embodiment of the inventive concept includes a processor that receives 3D data to generate output data and a buffer, and the processor includes an extraction unit that extracts raw object data from the 3D data and projects the raw object data onto a 2D plane to generate first object data, an augmentation unit that performs data augmentation on the first object data to generate second object data, a composition unit that synthesizes the second object data and background data to generate composite data, and a post-processing unit that performs post-processing on the composite data to generate the output data, and the buffer stores a plurality of parameters related to generation of the first object data, the second object data, the composite data, and the output data.
Abstract:
Provided is an ion beam treatment apparatus. The treatment apparatus includes a target for generating positive ions including a thin film for generating positive ions and nanowires disposed on at least one side of the thin film for generating positive ions, and a laser for emitting a laser beam incident on nanowires to project positive ions to a tumor region of a patient by generating the positive ions from the thin film for generating positive ions. Each of the nanowires may include a metal nanocore and a polymer shell surrounding the metal nanocore. The laser beam incident on the nanowires forms surface plasmon resonance, a near field having an intensity enhanced more than an intensity of the laser beam is formed by the surface plasmon resonance, and the positive ions are emitted from the thin film for generating positive ions by the near field.
Abstract:
Disclosed are a gas detection intelligence training system and an operating method thereof. The gas detection intelligence training system includes a mixing gas measuring device that collects an environmental gas from a surrounding environment, generates a mixing gas based on the collected environmental gas and a target gas, senses the mixing gas by using a first sensor array and a second sensor array under a first sensing condition and a second sensing condition, respectively, and generates measurement data based on the sensed results of the first sensor array and the second sensor array, and a detection intelligence training device including a processor that generates an ensemble prediction model based on the measurement data.
Abstract:
Provided is a method for measuring a depth profile of a particle beam, the method including providing first sensors in a first direction in auditory organs of a human body, providing second sensors in a second direction that intersects with the first direction on a top of a head and in a mouth of the human body, providing a particle beam into the head of the human body, detecting an acoustic signal generated by the particle beam through the first and second sensors, and calculating a depth profile of the first and second directions of the particle beam corresponding to a Bragg peak position of the particle beam in the head using the acoustic signal.
Abstract:
Provided are an ion generation target and a treatment apparatus including the target. The treatment apparatus includes a grid having a net shape of nano wires, an ion generation thin film attached to a side of the grid and generating ions by means of an incident laser beam, and a laser for emitting a laser beam into the nano wire of the grid to generate ions from the ion generation thin film and project the ions onto a tumor portion of a patient. The laser beam emitted into the nano wire forms a near field, the intensity of which is higher than that of the laser beam through a nanoplasmonics phenomenon, and the near field emits the ions from the ion generation thin film.
Abstract:
Provided is an analysis apparatus for a high energy particle and an analysis method for a high energy particle. The analysis apparatus for the high energy particle includes a scintillator generating photons with each unique wavelength by the impinging with a plurality of kinds of accelerated high energy particles, a parallel beam converting unit making the photons proceed in parallel to one another, a diffraction grating panel making the photons proceeding in parallel to one another enter at a certain angle, and refracting the photons at different angles depending on each unique wavelength, and a plurality of sensing units arranged on positions where the photons refracted at different angles from the diffraction grating panel reach in a state of being spatially separated, and detecting each of the photons.
Abstract:
Provided is a method of managing medical information in an operating system for a medical information database, the method including encrypting, by a first user, first medical information having patient treatment information by using a group key, and second medical information having patient private information by using a private key, generating, by the first user, an index corresponding to the encrypted first medical information, storing the encrypted first and second medical information and the index to the medical information database, searching, by a second user, the medical information database for the encrypted first medical information by using the index; and decrypting the searched encrypted first medical information by using the group key.