Abstract:
A parallel scheduling apparatus includes an information managing unit generating a first request information for scheduling, a first scheduling unit performing first scheduling and then generating first matching information on the basis of the first request information, and a second scheduling unit performing second scheduling on the basis of the first request information and the first matching information. The parallel scheduling has an advantage of improving the scheduling performance and lowering the implementation complexity, ensuring low delay and transmission fairness among VOQs at low input traffic, being applied to all scheduling algorithms that perform existing multi-iterations, and providing efficient scheduling in a packet switch having a long RTT time or having a very short time slot or cell size, such as an optical switch.
Abstract:
Provided herein is a link management method and apparatus in a multi-layered network, the method including confirming whether or not set virtual TE link resources can be committed to a virtual TE (traffic engineering) link; in response to the set virtual TE link resources being committable to the virtual TE link, committing the resources to the virtual TE link through resource commitment; in response to the set virtual TE link resources being not committable to the virtual TE link, determining whether or not the virtual TE link is an adaptive virtual TE link; and in response to the virtual TE link being determined as the adaptive virtual TE link and the adaptive bandwidth satisfying TE link setting standards, committing the resources to the virtual TE link.