Abstract:
Provided herein is a link management method and apparatus in a multi-layered network, the method including confirming whether or not set virtual TE link resources can be committed to a virtual TE (traffic engineering) link; in response to the set virtual TE link resources being committable to the virtual TE link, committing the resources to the virtual TE link through resource commitment; in response to the set virtual TE link resources being not committable to the virtual TE link, determining whether or not the virtual TE link is an adaptive virtual TE link; and in response to the virtual TE link being determined as the adaptive virtual TE link and the adaptive bandwidth satisfying TE link setting standards, committing the resources to the virtual TE link.
Abstract:
Provided herein is a path computation element based on Transport Network Assigned (TNA) address and a method for path computation based on User Network Interface (UNI). The path computation element and UNI based path computation method of the present disclosure minimize overhead caused by abstract Traffic Engineering (TE) link, and minimize manual environment set up, and routing information exchange and advertisements in a local domain or between domains.
Abstract:
A parallel scheduling apparatus includes an information managing unit generating a first request information for scheduling, a first scheduling unit performing first scheduling and then generating first matching information on the basis of the first request information, and a second scheduling unit performing second scheduling on the basis of the first request information and the first matching information. The parallel scheduling has an advantage of improving the scheduling performance and lowering the implementation complexity, ensuring low delay and transmission fairness among VOQs at low input traffic, being applied to all scheduling algorithms that perform existing multi-iterations, and providing efficient scheduling in a packet switch having a long RTT time or having a very short time slot or cell size, such as an optical switch.
Abstract:
Provided is a method and apparatus for creating a virtual traffic engineering (TE) link in an upper layer of an optical transport network (OTN). To create a virtual TE link, a node may determine to create the virtual TE link in an upper layer of an OTN, and may set up a forwarding adjacency (FA)-label switched path (LSP) between nodes in an OTN layer. The FA-LSP may be set up on a control plane of the OTN layer. The node may create the virtual TE link by registering the setup FA-LSP as a TE link of the upper layer of the node.