Abstract:
Provided is a finger recognition device including a signal generating unit configured to generate a biometric signal, a signal detecting unit configured to receive the biometric signal via a finger and detect the biometric signal, and a finger recognition unit configured to compare the detected biometric signal with stored signal information to recognize the finger.
Abstract:
The present invention relates to an eye-gaze based control device. The eye-gaze based control device of the present invention may control a control target device according to an eye-gaze point of a user. Here, the eye-gaze based control device controls the control target device by controlling a size of an image displayed to the user, thereby more precisely controlling the control target device.
Abstract:
Disclosed are a device and a method for anomaly detection of a gas sensor. The device includes a measuring unit that extracts a characteristic of a gas supplied from the outside, generates data based on the extracted characteristic, and outputs the data, and a data processing unit that receives the data, determines whether an error occurs in the data, and outputs an anomaly detection result based on a result of determining whether the error occurs in the data. The measuring unit performs a calibration operation or an environment adjusting operation before extracting the characteristic, and the data processing unit determines whether the error occurs in the data, based on machine learning.
Abstract:
Provided is a control apparatus which may apply an electric signal to a specific point or area selected from a plane or may receive the signal from the specific point or area. The control apparatus includes an upper electrode and a lower electrode. When it is intended that an electric field is applied to a point in which the upper electrode and the lower electrode come in contact with each other, an electrical bias is applied to the lower electrode, and the upper electrode is maintained in a non-connected state. When it is intended that the bias is selectively applied, the upper electrode is maintained in a grounded state. Therefore, transferring of the field from the lower electrode to a ground electrode disposed at a bottom is shielded, and thus transferring of the electric signal is also blocked.