摘要:
An automatic speech recognition system recognizes user changes to dictated text and infers whether such changes result from the user changing his/her mind, or whether such changes are a result of a recognition error. If a recognition error is detected, the system uses the type of user correction to modify itself to reduce the chance that such recognition error will occur again. Accordingly, the system and methods provide for significant speech recognition learning with little or no additional user interaction.
摘要:
An automatic speech recognition system recognizes user changes to dictated text and infers whether such changes result from the user changing his/her mind, or whether such changes are a result of a recognition error. If a recognition error is detected, the system uses the type of user correction to modify itself to reduce the chance that such recognition error will occur again. Accordingly, the system and methods provide for significant speech recognition learning with little or no additional user interaction.
摘要:
An automatic speech recognition system recognizes user changes to dictated text and infers whether such changes result from the user changing his/her mind, or whether such changes are a result of a recognition error. If a recognition error is detected, the system uses the type of user correction to modify itself to reduce the chance that such recognition error will occur again. Accordingly, the system and methods provide for significant speech recognition learning with little or no additional user interaction.
摘要:
An automatic speech recognition system recognizes user changes to dictated text and infers whether such changes result from the user changing his/her mind, or whether such changes are a result of a recognition error. If a recognition error is detected, the system uses the type of user correction to modify itself to reduce the chance that such recognition error will occur again. Accordingly, the system and methods provide for significant speech recognition learning with little or no additional user interaction.
摘要:
A speech recognition system recognizes filled pause utterances made by a speaker. In one embodiment, an ergodic model is used to acoustically model filled pauses that provides flexibility allowing varying utterances of the filled pauses to be made. The ergodic HMM model can also be used for other types of noise such as but limited to breathing, keyboard operation, microphone noise, laughter, door openings and/or closings, or any other noise occurring in the environment of the user or made by the user. Similarly, silence can be modeled using an ergodic HMM model. Recognition can be used with N-gram, context-free grammar or hybrid language models.
摘要:
A method and computer-readable medium convert the text of a word and a user's pronunciation of the word into a phonetic description to be added to a speech recognition lexicon. Initially, two possible phonetic descriptions are generated. One phonetic description is formed from the text of the word. The other phonetic description is formed by decoding a speech signal representing the user's pronunciation of the word. Both phonetic descriptions are scored based on their correspondence to the user's pronunciation. The phonetic description with the highest score is then selected for entry in the speech recognition lexicon.
摘要:
The invention performs speech recognition using an array of mixtures of Bayesian networks. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN models the world under the hypothesis that the common external hidden variable is in a corresponding one of those states. In accordance with the invention, the MBNs encode the probabilities of observing the sets of acoustic observations given the utterance of a respective one of said parts of speech. Each of the HSBNs encodes the probabilities of observing the sets of acoustic observations given the utterance of a respective one of the parts of speech and given a hidden common variable being in a particular state. Each HSBN has nodes corresponding to the elements of the acoustic observations. These nodes store probability parameters corresponding to the probabilities with causal links representing dependencies between ones of said nodes.
摘要:
A method and computer-readable medium convert the text of a word and a user's pronunciation of the word into a phonetic description to be added to a speech recognition lexicon. Initially, a plurality of at least two possible phonetic descriptions are generated. One phonetic description is formed by decoding a speech signal representing a user's pronunciation of the word. At least one other phonetic description is generated from the text of the word. The plurality of possible sequences comprising speech-based and text-based phonetic descriptions are aligned and scored in a single graph based on their correspondence to the user's pronunciation. The phonetic description with the highest score is then selected for entry in the speech recognition lexicon.
摘要:
Speech recognition is performed by receiving isolated speech training data indicative of a plurality of discretely spoken training words, and receiving continuous speech training data indicative of a plurality of continuously spoken training words. A plurality of speech unit models is trained based on the isolated speech training data and the continuous speech training data. Speech is recognized based on the speech unit models trained.
摘要:
A method and apparatus are provided for segmenting words into component parts. Under the invention, mutual information scores for pairs of graphoneme units found in a set of words are determined. Each graphoneme unit includes at least one letter. The graphoneme units of one pair of graphoneme units are combined based on the mutual information score. This forms a new graphoneme unit. Under one aspect of the invention, a syllable n-gram model is trained based on words that have been segmented into syllables using mutual information. The syllable n-gram model is used to segment a phonetic representation of a new word into syllables. Similarly, an inventory of morphemes is formed using mutual information and a morpheme n-gram is trained that can be used to segment a new word into a sequence of morphemes.