摘要:
In one embodiment during a warm-start mode, an estimator estimates a satellite correction signal based on satellite orbit data, satellite clock data, and satellite bias correction data derived from stored received raw satellite signal measurements. A data source selector seamlessly switches a measurement data source from the stored received raw satellite signal measurements to live, real-time raw satellite signal measurements if or when a respective measurement time tag of a last-processed one of the stored received satellite signal measurements approaches or reaches the current time.
摘要:
A moveable object determines a preliminary position for the moveable object using received satellite navigation signals and satellite orbit correction information and satellite clock correction information. A position correction is determined by identifying which cell, of a predefined set of geographical cells, corresponds to the determined preliminary position, and obtaining from a database, pre-computed tectonic terrestrial plate position information for the identified cell. Based on the information for the identified cell, a tectonic terrestrial plate, corresponding to the determined preliminary position of the moveable object is identified. Based on the identified tectonic terrestrial plate, a position correction is determined, the position correction corresponding to the identified tectonic terrestrial plate and a reference epoch, and a corrected position of the moveable object is generated in accordance with the determined preliminary position of the moveable object and the determined position correction.
摘要:
A satellite corrections generation system receives reference receiver measurement information from a plurality of reference receivers at established locations. In accordance with the received reference receiver measurement information, and established locations of the reference receivers, the system determines narrow-lane navigation solutions for the plurality of reference receivers. The system also determines clusters of single-difference (SD) narrow-lane floating ambiguities, each cluster comprising pairs of SD narrow-lane floating ambiguities for respective pairs of satellites. A satellite narrow-lane bias value for each satellite of a plurality of satellites is initially determined in accordance with fractional portions of the SD narrow-lane floating ambiguities in the clusters, and then periodically updated by a Kalman filter. A set of navigation satellite corrections for each satellite, including the satellite narrow-lane bias value for each satellite, is generated and transmitted to navigation receivers for use in determining locations of the navigation receivers.
摘要:
A satellite corrections generation system receives reference receiver measurement information from a plurality of reference receivers at established locations. In accordance with the received reference receiver measurement information, and established locations of the reference receivers, the system determines wide-lane navigation solutions for the plurality of reference receivers. The system also determines clusters of single-difference (SD) wide-lane floating ambiguities. A satellite wide-lane bias value for each satellite of a plurality of satellites is initially determined in accordance with fractional portions of the SD wide-lane floating ambiguities in the clusters and over-range adjustment criteria. A set of navigation satellite corrections for each satellite, including the satellite wide-lane bias value for each satellite, is generated and transmitted to navigation receivers for use in determining locations of the navigation receivers.
摘要:
A satellite corrections generation system receives reference receiver measurement information from a plurality of reference receivers at established locations. In accordance with the received reference receiver measurement information, and established locations of the reference receivers, the system determines narrow-lane navigation solutions for the plurality of reference receivers. The system also determines clusters of single-difference (SD) narrow-lane floating ambiguities, each cluster comprising pairs of SD narrow-lane floating ambiguities for respective pairs of satellites. A satellite narrow-lane bias value for each satellite of a plurality of satellites is initially determined in accordance with fractional portions of the SD narrow-lane floating ambiguities in the clusters, and then periodically updated by a Kalman filter. A set of navigation satellite corrections for each satellite, including the satellite narrow-lane bias value for each satellite, is generated and transmitted to navigation receivers for use in determining locations of the navigation receivers.
摘要:
A moveable object determines a preliminary position for the moveable object using received satellite navigation signals and satellite orbit correction information and satellite clock correction information. A position correction is determined by identifying which cell, of a predefined set of geographical cells, corresponds to the determined preliminary position, and obtaining from a database, pre-computed tectonic terrestrial plate position information for the identified cell. Based on the information for the identified cell, a tectonic terrestrial plate, corresponding to the determined preliminary position of the moveable object is identified. Based on the identified tectonic terrestrial plate, a position correction is determined, the position correction corresponding to the identified tectonic terrestrial plate and a reference epoch, and a corrected position of the moveable object is generated in accordance with the determined preliminary position of the moveable object and the determined position correction.
摘要:
An offset module or navigation positioning estimator determines a reference frame bias between precise point positioning (PPP) reference frame and an RTK reference frame, where the PPP reference frame is associated with relative position estimates generated by the relative position estimator and where the RTK reference frame is associated RTK position estimates generated by the RTK position estimator. Upon loss of the RTK correction signal, the navigation positioning estimator or controller switches to a relative position mode based a last available RTK position. The relative position estimator determines an estimated relative position based on time-differenced phase measurements by the mobile receiver in the relative position mode. The relative position estimator or offset module offsets the estimated relative position in the relative position mode.
摘要:
A real-time kinematic (RTK) filter uses the backup data to estimate a relative position vector between the mobile receiver at the first measurement time and the mobile receiver at the second measurement time and to provide recovery data associated with a satellite-differenced double-difference estimation for the mobile receiver between the first measurement time and the second measurement time. A navigation positioning estimator can apply the relative position vector, the backup data, the recovery data from the RTK filter, and received correction data with precise clock and orbit information on the satellite signals, as inputs, constraints, or both for convergence or resolution of wide-lane and narrow-lane ambiguities, and determination of a precise position, in accordance with a precise positioning algorithm.
摘要:
A wide-lane ambiguity and a respective satellite wide-lane bias are determined for the collected phase measurements for each satellite for assistance in narrow-lane ambiguity resolution. Satellite correction data is determined for each satellite in an orbit solution based on the collected raw phase and code measurements and determined orbital narrow-lane ambiguity and respective orbital satellite narrow-lane bias. A slow satellite clock correction is determined based on the satellite orbital correction data, the collected raw phase and code measurements, and clock narrow-lane ambiguity and respective satellite narrow-lane bias. A low latency clock module or data processor determines lower-latency satellite clock correction data or delta clock adjustment to the slow satellite clock based on freshly or recently updated measurements of the collected raw phase measurements that are more current than a plurality of previous measurements of the collected raw phase measurements used for the slow satellite clock correction to provide lower-latency clock correction data.
摘要:
In a system for navigating a moving object according to signals received from satellites, a moving object receives mobile base data from a mobile base station, the received mobile base data including satellite measurement data of the mobile base station, the satellite measurement data of the mobile base station including code measurements and carrier phase measurements for the plurality of satellites, and position-related information of the mobile base station. In accordance with the satellite navigation data for the moving object and the received mobile base data, the moving object performing a real-time kinematic (RTK) computation process to resolve carrier phase ambiguities and determine a relative position of the moving object relative to the mobile base station. A signal reporting information corresponding to the relative position is sent via a transmitter of the moving object.