-
公开(公告)号:US20230336739A1
公开(公告)日:2023-10-19
申请号:US18030182
申请日:2021-11-03
发明人: Chenjie Gu , Hongzi Mao , Ching-Han Chiang , Cheng Chen , Jingning Han , Ching Yin Derek Pang , Rene Andre Claus , Marisabel Guevara Hechtman , Daniel James Visentin , Christopher Sigurd Fougner , Charles Booth Schaff , Nishant Patil , Alejandro Ramirez Bellido
IPC分类号: H04N19/149 , H04N19/126 , H04N19/172
CPC分类号: H04N19/149 , H04N19/126 , H04N19/172
摘要: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for encoding video comprising a sequence of video frames. In one aspect, a method comprises for one or more of the video frames: obtaining a feature embedding for the video frame; processing the feature embedding using a rate control machine learning model to generate a respective score for each of multiple quantization parameter values; selecting a quantization parameter value using the scores; determining a cumulative amount of data required to represent: (i) an encoded representation of the video frame and (ii) encoded representations of each preceding video frame; determining, based on the cumulative amount of data, that a feedback control criterion for the video frame is satisfied; updating the selected quantization parameter value; and processing the video frame using an encoding model to generate the encoded representation of the video frame.
-
公开(公告)号:US12088823B2
公开(公告)日:2024-09-10
申请号:US18030182
申请日:2021-11-03
发明人: Chenjie Gu , Hongzi Mao , Ching-Han Chiang , Cheng Chen , Jingning Han , Ching Yin Derek Pang , Rene Andre Claus , Marisabel Guevara Hechtman , Daniel James Visentin , Christopher Sigurd Fougner , Charles Booth Schaff , Nishant Patil , Alejandro Ramirez Bellido
IPC分类号: H04N7/12 , H04N19/126 , H04N19/149 , H04N19/172
CPC分类号: H04N19/149 , H04N19/126 , H04N19/172
摘要: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for encoding video comprising a sequence of video frames. In one aspect, a method comprises for one or more of the video frames: obtaining a feature embedding for the video frame; processing the feature embedding using a rate control machine learning model to generate a respective score for each of multiple quantization parameter values; selecting a quantization parameter value using the scores; determining a cumulative amount of data required to represent: (i) an encoded representation of the video frame and (ii) encoded representations of each preceding video frame; determining, based on the cumulative amount of data, that a feedback control criterion for the video frame is satisfied; updating the selected quantization parameter value; and processing the video frame using an encoding model to generate the encoded representation of the video frame.
-