摘要:
In accordance with the present invention, there is provided a valve assembly wherein a heating modality such as an induction heater is cooperatively engaged to a prescribed location on a valve housing or body of a valve to effectively maintain the temperature of the valve above the saturation temperature of the related system pressure. Maintaining this temperature differential effectively avoids the accumulation of condensate within the interior of the valve body and/or on other internal structural features thereof.
摘要:
In accordance with the present invention, there is provided a valve assembly wherein a heating modality such as an induction heater is cooperatively engaged to a prescribed location on a valve housing or body of a valve to effectively maintain the temperature of the valve above the saturation temperature of the related system pressure. Maintaining this temperature differential effectively avoids the accumulation of condensate within the interior of the valve body and/or on other internal structural features thereof.
摘要:
An inner casing (10) of a rotating thermal machine, in particular a steam turbine, has essentially the form of a hollow cylinder and is divided in a parting plane (20), which extends through an axis (11) of said casing, into a lower casing part (12) and an upper casing part (13), which casing parts (12, 13) are detachably connected to one another in the parting plane (20). The thermomechanical properties are improved with respect to casings provided with flanges in that the two casing parts (12, 13) have, in the region of the parting plane (20), two overlapping areas (14, 15) which lie opposite one another and in which the two casing parts (12, 13) overlap one another and are detachably connected to one another with overlapping sections (17, 18), in that the two casing parts (12, 13) have a predefined wall thickness (d), and in that the sum of the thicknesses of the overlapping sections (17, 18) is approximately the same as the wall thickness (d) of the two casing parts (12, 13) in the overlapping areas (14, 15).
摘要:
The disclosure relates to a radially fed axial steam turbine with a cold inlet duct, axially displaced from a hot inlet duct such that is it further away from a first blade row than the hot inlet duct. The cold inlet duct receives a cold steam from a cold inlet spiral and directs it into the hot inlet duct in such a way that a boundary layer of cold steam is formed over the rotor circumferential surface between the outlet end of the cold inlet duct and the blade and vane rows. The rotor circumferential surface is also adapted to promote and maintain the boundary layer. In this way, a maximum temperature to which the rotor is exposed can be reduced.
摘要:
A steam turbine (20), in particular for high pressure and/or intermediate pressure applications, has a rotor (11), which can rotate about an axis (23), an inner casing (14), which concentrically surrounds the rotor (11) at a distance, so as to form an annular passage (12) extending in the axial direction, and an outer casing (13), which concentrically surrounds the inner casing (14) at a distance so as to form an annular intermediate space (16) extending in the axial direction, blading including rotor blades (21) and guide vanes (22) being provided in the annular passage (12), and the annular passage (12), on the outlet side, being in communication with the intermediate space (16) in order for the steam to be passed on, and the inner casing (14) also being externally surrounded by a plurality of shrink rings (15), which are arranged one behind the other in the axial direction and project into the intermediate space (16). In a steam turbine of this type, the aerodynamics are improved by virtue of the fact that a device (24) is provided for leveling the finned structure produced by the shrink rings (15) on the outer side of the inner casing (14), in such a manner that the annular intermediate space (16) is delimited on the inner side by a continuously smooth inner surface which is favorable in terms of fluid dynamics.
摘要:
The invention relates to a steam turbine, in particular for a power plant, comprising an outer casing, an inner casing arranged in the outer casing, and a plurality of guide blade rows. In order to reduce leakage flows in the inner casing, a blade ring is provided, which is arranged in the inner casing and in which at least some of the guide blade rows are arranged.
摘要:
A steam turbine is provided having a relief groove which is arranged in the region of the equalizing piston and extends in the circumferential direction of the rotor. The relief groove, with regard to an inlet passage, is arranged in the axial upstream direction so that it is arranged on the rotor outside a region in which the steam flow enters the bladed flow path via the inlet passage. The relief groove, with regard to the first blade row, is arranged in a region in which the greatest thermal stresses can arise in the rotor. As an option, the relief groove has a cover for reducing vortex flows, and also devices for reducing heating of the groove or devices for active cooling. The steam turbine allows an increased number of risk-free running up and running down operations of the steam turbine with minimum detriment to the turbine performance.
摘要:
The disclosure relates to a radially fed axial steam turbine with a cold inlet duct, axially displaced from a hot inlet duct such that is it further away from a first blade row than the hot inlet duct. The cold inlet duct receives a cold steam from a cold inlet spiral and directs it into the hot inlet duct in such a way that a boundary layer of cold steam is formed over the rotor circumferential surface between the outlet end of the cold inlet duct and the blade and vane rows. The rotor circumferential surface is also adapted to promote and maintain the boundary layer. In this way, a maximum temperature to which the rotor is exposed can be reduced.
摘要:
A steam turbine (10), especially for the high-pressure range or intermediate-pressure range, includes a rotor (11) which is rotatably mounted around an axis and concentrically enclosed at a distance by an inner casing (12), wherein between the rotor (11) and the inner casing (12) a flow passage (13) is formed, which on the inlet side is axially delimited by a balance piston (18) which is arranged on the rotor (11), and into which flow passage rotor blades (15) and stator blades (17), alternating in the direction of flow, radially project, and wherein, at the entry of the flow passage (13), an inlet scroll (14), through which steam is guided from the outside radially inwards and deflected in a deflection region (27) in the axial direction to the inlet of the flow passage (13), is formed on the inner casing (12). A reduction of the thermal loads and stresses is achieved by a stress-relief slot (20) in the deflection region (27) upstream of the first rotor blade row (15) for reducing stresses in the fastening slot (16) of the first rotor blade row (15) in the rotor (11), and by a heat shield (21) arranged in the region of the stress-relief slot (20) for protecting the rotor (11) against high temperatures.
摘要:
A steam turbine (10), especially for the high-pressure range or intermediate-pressure range, includes a rotor (11) which is rotatably mounted around an axis and concentrically enclosed at a distance by an inner casing (12), wherein between the rotor (11) and the inner casing (12) a flow passage (13) is formed, which on the inlet side is axially delimited by a balance piston (18) which is arranged on the rotor (11), and into which flow passage rotor blades (15) and stator blades (17), alternating in the direction of flow, radially project, and wherein, at the entry of the flow passage (13), an inlet scroll (14), through which steam is guided from the outside radially inwards and deflected in a deflection region (27) in the axial direction to the inlet of the flow passage (13), is formed on the inner casing (12). A reduction of the thermal loads and stresses is achieved by a stress-relief slot (20) in the deflection region (27) upstream of the first rotor blade row (15) for reducing stresses in the fastening slot (16) of the first rotor blade row (15) in the rotor (11), and by a heat shield (21) arranged in the region of the stress-relief slot (20) for protecting the rotor (11) against high temperatures.