Abstract:
A load adapter and method for terminating an optical fiber in a small form factor connector having a ferrule portion and a barrel portion that include a pre-loaded thermoplastic adhesive material, and a housing. The load adapter includes a thermally conductive body having a base section and a connector mounting section extending axially therefrom. The base section is adapted to be inserted/placed in an oven port of a portable heat source. The connector mounting section has a substantially cylindrical shape adapted to surround a substantial portion of the small form factor connector housing and includes at least one slot. The connector mounting section includes a mount adapted to receive the small form factor connector. The mount includes a stem having a substantially cylindrical structure adapted to slidably receive the ferrule portion of the small form factor connector, where an end of a received ferrule portion of the small form factor connector extends beyond an edge of an inner wall of the stem. An optical fiber is inserted through the connector housing and ferrule portion such that an end of the optical fiber extends beyond the end of the ferrule portion. The load adapter can then be removed from the heat source, cooled, and the end of the optical fiber can be polished. The load adapter and method can thus provide for practical field termination of an optical fiber in a small form factor fiber connector.
Abstract:
A optical connector for terminating an optical fiber comprises a housing configured to mate with an LC receptacle. The housing comprises a polymer material that does not deform when exposed to temperatures of at least 210° C. The optical connector further includes a ferrule assembly. The ferrule assembly includes a ferrule portion and a barrel portion. The ferrule assembly is preloaded with a thermoplastic adhesive material. The thermoplastic material can be a polyamide-based hot melt adhesive. The thermoplastic mater can be an ultra high temperature hot melt adhesive. These optical connectors can be terminated in the field in a short amount of time.
Abstract:
A plug-type optical connector 10 is provided with a ferrule 22 and an aligning sleeve member 24. The aligning sleeve member 24 receives a portion of the ferrule 22 including an abutting end face 48 inside a bore 58 to prevent staining and damage and uses a movable shutter 54 to prevent light emitted through the ferrule 22 from leaking to the outside. The socket type optical connector 14 is provided with a ferrule 92 and a holding section 94. The optical connector 14 is not provided with an aligning sleeve member and further can hold a coated optical fiber by a holding section 94 behind the ferrule 92 by a radius of curvature of at least a prescribed minimum radius of curvature. Optical loss in the coated optical fiber can be reduced while effectively reducing the external dimensions in the direction of extension of the ferrule 92 at the time of use. An optical fiber connecting device that includes a combination of a pair of optical connectors is also provided to be suitably applied to an optical transmission line laid indoors.