Abstract:
A method of partitioning a weighted combinatorial graph representative of a dataset consists of the steps of generating a generalized Laplacian matrix corresponding to the combinatorial graph, computing the eigenstructure of the generalized Laplacian matrix, determining if an end criterion is satisfied using the eigenstructure, and if the end criterion is not satisfied, calculating new values for at least some of the plurality of weighting factors using the eigenstructure, updating the combinatorial graph with the new values for at least some of the weighting factors, and returning to the generating step.
Abstract:
A method of partitioning a weighted combinatorial graph representative of a dataset consists of the steps of generating a generalized Laplacian matrix corresponding to the combinatorial graph, computing the eigenstructure of the generalized Laplacian matrix, determining if an end criterion is satisfied using the eigenstructure, and if the end criterion is not satisfied, calculating new values for at least some of the plurality of weighting factors using the eigenstructure, updating the combinatorial graph with the new values for at least some of the weighting factors, and returning to the generating step.
Abstract:
In a first exemplary embodiment of the present invention, an automated, computerized method is provided for processing an image. According to a feature of the present invention, the method comprises the steps of providing an image file depicting an image, in a computer memory, assembling a feature vector for the image file, the feature vector containing information regarding a likelihood that a selected pair of regions of the image file are of a same intrinsic characteristic, providing a classifier derived from a computer learning technique, computing a classification score for the selected pair of regions of the image file, as a function of the feature vector and the classifier and classifying the regions as being of the same intrinsic characteristic, as a function of the classification score.
Abstract:
In an exemplary embodiment of the present invention, a test bed for optimizing an image segregation is provided. According to a feature of the present invention, the test bed comprises a memory storing an image file containing an image, a set of operations, a set of constraint software modules and a set of parameters relevant to the image, a transform module for performing a preselected one of the set of operations, defined by a preselected one of the set of constraint software modules, on the image, as a function of preselected ones of the set of parameters, to provide an output image, a test module utilizing the transform module output image, an analysis module for analyzing test module performance, and a feedback loop for varying selected ones of the operations, constraint software modules and parameters, for input to the transform module, to provide a new output image for input to the test module.
Abstract:
In a first exemplary embodiment of the present invention, an automated, computerized method is provided for processing an image. According to a feature of the present invention, the method comprises the steps of providing an image file depicting an image, in a computer memory, assembling a feature vector for the image file, the feature vector containing information regarding a likelihood that a selected pair of regions of the image file are of a same intrinsic characteristic, providing a classifier derived from a computer learning technique, computing a classification score for the selected pair of regions of the image file, as a function of the feature vector and the classifier and classifying the regions as being of the same intrinsic characteristic, as a function of the classification score.
Abstract:
In an exemplary embodiment of the present invention, an automated, computerized method is provided for processing an image. According to a feature of the present invention, the method comprises the steps of providing an image, organizing spatio-spectral information for the image in a matrix equation expressed by: [A][x]=[b], wherein [A] expresses values determined by a constraining relationship imposed upon the spatio-spectral information, [b] expresses recorded information for the image, and [x] expresses an unknown material/illumination component of the image, and utilizing the matrix equation in an image segregation operation.
Abstract:
In an exemplary embodiment of the present invention, an automated, computerized method is provided for processing an image. According to a feature of the present invention, the method comprises the steps of providing an image, organizing spatio-spectral information for the image in a matrix equation expressed by: [A][x]=[b], wherein [A] expresses values determined by a constraining relationship imposed upon the spatio-spectral information, [b] expresses recorded information for the image, and [x] expresses an unknown material/illumination component of the image, and utilizing the matrix equation in an image segregation operation.
Abstract:
In a first exemplary embodiment of the present invention, an automated, computerized method is provided for processing an image. According to a feature of the present invention, the method comprises the steps of providing an image file depicting an image, in a computer memory, forming a set of selectively varied representations of the image file and performing an image segregation operation on at least one preselected representation of the image of the image file, to generate intrinsic images corresponding to the image. According to a feature of the exemplary embodiment of the present invention, the selectively varied representations comprise multi-resolution representations such as a scale-spaced pyramid of representations. In a further feature of the exemplary embodiment of the present invention, the intrinsic images comprise a material image and an illumination image.
Abstract:
In a first exemplary embodiment of the present invention, an automated, computerized method is provided for processing an image. According to a feature of the present invention, the method comprises the steps of providing an image file depicting an image, in a computer memory, forming a set of selectively varied representations of the image file and performing an image segregation operation on at least one preselected representation of the image of the image file, to generate intrinsic images corresponding to the image. According to a feature of the exemplary embodiment of the present invention, the selectively varied representations comprise multi-resolution representations such as a scale-spaced pyramid of representations. In a further feature of the exemplary embodiment of the present invention, the intrinsic images comprise a material image and an illumination image.
Abstract:
In an exemplary embodiment of the present invention, an automated, computerized method is provided for processing an image. According to a feature of the present invention, the method comprises the steps of generating spatio-spectral information for the image, defining a constraint as a function of the spatio-spectral information, and performing an optimization operation as a function of the constraint to generate an intrinsic image corresponding to the image.