摘要:
An electrosurgical system and method are disclosed. The system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The generator is further adapted to supply an electrical signal having at least one substantially constant value to tissue to determine initial tissue impedance response. The generator includes sensor circuitry adapted to continuously monitor initial tissue impedance response, wherein the initial tissue impedance response includes one of an initial impedance, an impedance drop, an impedance minimum and a first impedance rise. The generator also includes a microprocessor adapted to generate at least one tissue parameter based as a function of the initial impedance, the impedance drop, the impedance minimum and the first impedance rise. The system also includes an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue for treatment.
摘要:
An electrode assembly having a pair of opposing first and second jaw members is provided. Each jaw member includes an electrically conductive tissue sealing surface extending along a length thereof, each tissue sealing surface is adapted to connect to a source of electrosurgical energy such that the tissue sealing surfaces are capable of conducting electrosurgical energy through tissue held therebetween to effect a seal. The assembly includes at least one heating element disposed within at least one of the jaw members. The heating element is configured to pre-heat the electrically conductive tissue sealing surfaces before electrosurgical energy is applied.
摘要:
An electrosurgical system for sealing tissue is disclosed which includes an electrosurgical forceps having a shaft member and a jaw member disposed at a distal end thereof. The jaw members are movable from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween. Each of the jaw members including a sealing plate which communicates electrosurgical energy through tissue held therebetween. The jaw members are adapted to connect to an electrosurgical generator. The system also includes one or more sensors which determine a gap distance between the sealing plates of the jaw members and a microprocessor which is adapted to communicate with the sensor and measure an initial gap distance between the sealing plates as well as to generate a desired gap distance trajectory based on the initial gap distance. The microprocessor is further adapted to communicate with the at least one sensor in real time to adjust output level of the electrosurgical generator as a function of the measured gap distance during the sealing process.
摘要:
An electrosurgical system and method are disclosed. The system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The generator is further adapted to supply an electrical signal having at least one substantially constant value to tissue to determine initial tissue impedance response. The generator includes sensor circuitry adapted to continuously monitor initial tissue impedance response, wherein the initial tissue impedance response includes one of an initial impedance, an impedance drop, an impedance minimum and a first impedance rise. The generator also includes a microprocessor adapted to generate at least one tissue parameter based as a function of the initial impedance, the impedance drop, the impedance minimum and the first impedance rise. The system also includes an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue for treatment.
摘要:
An electrosurgical system and method are disclosed. The system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The generator is further adapted to supply an electrical signal having at least one substantially constant value to tissue to determine initial tissue impedance response. The generator includes sensor circuitry adapted to continuously monitor initial tissue impedance response, wherein the initial tissue impedance response includes one of an initial impedance, an impedance drop, an impedance minimum and a first impedance rise. The generator also includes a microprocessor adapted to generate at least one tissue parameter based as a function of the initial impedance, the impedance drop, the impedance minimum and the first impedance rise. The system also includes an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue for treatment.
摘要:
An electrosurgical system for sealing tissue is disclosed. The system includes a forceps having opposing jaw members that cooperate to grasp tissue therebetween, wherein each of the jaw members includes a sealing plate that is connected to an electrosurgical generator and is configured to communicate electro surgical energy through the tissue held therebetween. The system also includes at least one sensor which determines a gap distance between the sealing plates of the jaw members and a microprocessor programmed to communicate with the at least one sensor to measure an initial gap distance between the sealing plates and to generate at least one desired gap distance value based on the initial gap distance, the microprocessor further programmed to communicate with the at least one sensor to adjust output level of the electrosurgical generator as a function of the measured gap distance during the sealing process.
摘要:
An electrosurgical system for sealing tissue is disclosed which includes an electrosurgical forceps having a shaft member and a jaw member disposed at a distal end thereof. The jaw members are movable from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween. Each of the jaw members including a sealing plate which communicates electrosurgical energy through tissue held therebetween. The jaw members are adapted to connect to an electrosurgical generator. The system also includes one or more sensors which determine a gap distance between the sealing plates of the jaw members and a microprocessor which is adapted to communicate with the sensor and measure an initial gap distance between the sealing plates as well as to generate a desired gap distance trajectory based on the initial gap distance. The microprocessor is further adapted to communicate with the at least one sensor in real time to adjust output level of the electrosurgical generator as a function of the measured gap distance during the sealing process.
摘要:
Various safe switching mechanisms are provided for use with electrosurgical instruments which prevent arcing between the high-energy contacts as the high-energy source is activated. The switching mechanisms generally include a pair of high-energy contacts and a pair of activation contacts. An actuator is provided which initially engages the high-energy contacts in advance of engagement of the activation contacts to prevent arcing and subsequently disengages the activation contacts in advance of the high-energy contacts as the energy source is deactivated. A method of switching power to an electrosurgical instrument while avoiding damage to high-energy contacts is also disclosed.
摘要:
Various safe switching mechanisms are provided for use with electrosurgical instruments which prevent arcing between the high-energy contacts as the high-energy source is activated. The switching mechanisms generally include a pair of high-energy contacts and a pair of activation contacts. An actuator is provided which initially engages the high-energy contacts in advance of engagement of the activation contacts to prevent arcing and subsequently disengages the activation contacts in advance of the high-energy contacts as the energy source is deactivated. A method of switching power to an electrosurgical instrument while avoiding damage to high-energy contacts is also disclosed.
摘要:
System and method for controlling delivery of energy to divide tissue are disclosed. The system comprises an electrosurgical instrument having an electrically energizable cutting element which communicates electrical energy to the tissue and a generator to supply the energy to the electrosurgical instrument which supplies the energy to the tissue in a first pulse to react the tissue, in slow pulses to create a desiccation line until impedance at the tissue has reached a threshold, and in rapid pulses to divide tissue across the desiccation line.