Complex-object detection using a cascade of classifiers
    1.
    发明授权
    Complex-object detection using a cascade of classifiers 有权
    使用级联的分类器进行复杂对象检测

    公开(公告)号:US08630483B2

    公开(公告)日:2014-01-14

    申请号:US13494676

    申请日:2012-06-12

    IPC分类号: G06K9/62

    摘要: Complex-object detection using a cascade of classifiers for identifying complex-objects parts in an image in which successive classifiers process pixel patches on condition that respective discriminatory features sets of previous classifiers have been identified and selecting additional pixel patches from a query image by applying known positional relationships between an identified complex-object part and another part to be identified.

    摘要翻译: 复杂对象检测使用级联的分类器来识别图像中的复杂对象部分,其中连续的分类器在已经识别先前分类器的相应的鉴别特征集的条件下处理像素块,并且通过应用已知的方法从查询图像中选择附加的像素补丁 识别的复杂对象部分与要识别的另一部分之间的位置关系。

    Vision-Based Object Detection by Part-Based Feature Synthesis
    2.
    发明申请
    Vision-Based Object Detection by Part-Based Feature Synthesis 有权
    基于部分特征综合的基于视觉的物体检测

    公开(公告)号:US20120257819A1

    公开(公告)日:2012-10-11

    申请号:US13080717

    申请日:2011-04-06

    IPC分类号: G06K9/62

    CPC分类号: G06K9/6231

    摘要: A method is provided for training and using an object classifier to identify a class object from a captured image. A plurality of still images is obtained from training data and a feature generation technique is applied to the plurality of still images for identifying candidate features from each respective image. A subset of features is selected from the candidate features using a similarity comparison technique. Identifying candidate features and selecting a subset of features is iteratively repeated a predetermined number of times for generating a trained object classifier. An image is captured from an image capture device. Features are classified in the captured image using the trained object classifier. A determination is made whether the image contains a class object based on the trained object classifier associating an identified feature in the image with the class object.

    摘要翻译: 提供了一种用于训练和使用对象分类器从捕获的图像中识别类对象的方法。 从训练数据获得多个静止图像,并且将特征生成技术应用于用于从各个图像识别候选特征的多个静止图像。 使用相似性比较技术从候选特征中选择特征的子集。 识别候选特征和选择特征的子集被迭代地重复预定次数以生成训练对象分类器。 从图像捕获设备捕获图像。 使用训练对象分类器将特征分类为捕获的图像。 确定基于训练对象分类器是否将图像中的识别的特征与类对象相关联的图像包含类对象。

    Motorcycle towing device
    3.
    发明授权
    Motorcycle towing device 有权
    摩托车牵引装置

    公开(公告)号:US09539951B1

    公开(公告)日:2017-01-10

    申请号:US14854335

    申请日:2015-09-15

    申请人: Dan Levi

    发明人: Dan Levi

    CPC分类号: B60P3/077 B60P3/125 B60R9/06

    摘要: The invention provides a device for towing a motorcycle behind a land vehicle with a front wheel of the motorcycle off the ground. The device has a platform connectable via a support bar to a hitch receiver of the towing vehicle. The platform is pivotally connected to the support bar in order to allow the motorcycle to tilts as the towing vehicle turns. The platform has a stationary front stopper for the front side of the motorcycle wheel supported by the platform and a rear stopper which is pivotally connected to the platform and which forms a mechanism for automatically locking the front wheel of the motorcycle from behind when the rear stopper is turned during loading the wheel onto the platform.

    摘要翻译: 本发明提供了一种用于在摩托车后面的摩托车上牵引摩托车离开地面的装置。 该装置具有通过支撑杆连接到牵引车辆的牵引接收器的平台。 平台枢转地连接到支撑杆,以便当牵引车辆转动时摩托车倾斜。 该平台具有用于由平台支撑的摩托车车轮的前侧的固定前止动件和可枢转地连接到平台的后止动件,并且形成用于当后止动件自动将摩托车的前轮从后面锁定的机构 在将车轮加载到平台上时被转动。

    Vision-based object detection by part-based feature synthesis
    4.
    发明授权
    Vision-based object detection by part-based feature synthesis 有权
    基于视觉的物体检测通过基于部分的特征综合

    公开(公告)号:US08724890B2

    公开(公告)日:2014-05-13

    申请号:US13080717

    申请日:2011-04-06

    IPC分类号: G06K9/62

    CPC分类号: G06K9/6231

    摘要: A method is provided for training and using an object classifier to identify a class object from a captured image. A plurality of still images is obtained from training data and a feature generation technique is applied to the plurality of still images for identifying candidate features from each respective image. A subset of features is selected from the candidate features using a similarity comparison technique. Identifying candidate features and selecting a subset of features is iteratively repeated a predetermined number of times for generating a trained object classifier. An image is captured from an image capture device. Features are classified in the captured image using the trained object classifier. A determination is made whether the image contains a class object based on the trained object classifier associating an identified feature in the image with the class object.

    摘要翻译: 提供了一种用于训练和使用对象分类器从捕获的图像中识别类对象的方法。 从训练数据获得多个静止图像,并且将特征生成技术应用于用于从各个图像识别候选特征的多个静止图像。 使用相似性比较技术从候选特征中选择特征的子集。 识别候选特征和选择特征的子集被迭代地重复预定次数以生成训练对象分类器。 从图像捕获设备捕获图像。 使用训练对象分类器将特征分类为捕获的图像。 确定基于训练对象分类器是否将图像中的识别的特征与类对象相关联的图像包含类对象。

    System and method of fast object detection using parts to whole fragment detection
    5.
    发明授权
    System and method of fast object detection using parts to whole fragment detection 有权
    快速对象检测的系统和方法,使用零件到整个片段检测

    公开(公告)号:US09400945B2

    公开(公告)日:2016-07-26

    申请号:US13241908

    申请日:2011-09-23

    IPC分类号: G06K9/68

    CPC分类号: G06K9/68

    摘要: A system and method may compare an image vector representing an image feature of a first image fragment of an image to database vectors representing the image feature of database image fragments of database images. It may be determined based on the comparison a first matching database vector of the database vectors which most closely, among the database vectors, describes the first image feature represented by the image vector. The system or method may determine, using a data structure in conjunction with the first matching database vector and previously matched database vectors, a second of the database vectors which includes the first matching database vector and the previously matched database vectors and most closely describes a second image fragment including the first image fragment. The system or method may determine an object feature based on the second database vector.

    摘要翻译: 系统和方法可以将表示图像的第一图像片段的图像特征的图像矢量与表示数据库图像的数据库图像片段的图像特征的数据库向量进行比较。 可以基于比较来确定在数据库向量中最接近地描述由图像向量表示的第一图像特征的数据库向量的第一匹配数据库向量。 系统或方法可以使用结合第一匹配数据库向量和先前匹配的数据库向量的数据结构来确定包括第一匹配数据库向量和先前匹配的数据库向量的第二数据库向量,并最密切地描述第二 图像片段包括第一个图像片段。 系统或方法可以基于第二数据库向量来确定对象特征。

    SYSTEM AND METHOD OF FAST OBJECT DETECTION USING PARTS TO WHOLE FRAGMENT DETECTION
    6.
    发明申请
    SYSTEM AND METHOD OF FAST OBJECT DETECTION USING PARTS TO WHOLE FRAGMENT DETECTION 有权
    使用零件进行全面检测的快速物体检测系统和方法

    公开(公告)号:US20130077873A1

    公开(公告)日:2013-03-28

    申请号:US13241908

    申请日:2011-09-23

    IPC分类号: G06K9/68 G06F17/30

    CPC分类号: G06K9/68

    摘要: A system and method may compare an image vector representing an image feature of a first image fragment of an image to database vectors representing the image feature of database image fragments of database images. It may be determined based on the comparison a first matching database vector of the database vectors which most closely, among the database vectors, describes the first image feature represented by the image vector. The system or method may determine, using a data structure in conjunction with the first matching database vector and previously matched database vectors, a second of the database vectors which includes the first matching database vector and the previously matched database vectors and most closely describes a second image fragment including the first image fragment. The system or method may determine an object feature based on the second database vector.

    摘要翻译: 系统和方法可以将表示图像的第一图像片段的图像特征的图像矢量与表示数据库图像的数据库图像片段的图像特征的数据库向量进行比较。 可以基于比较来确定在数据库向量中最接近地描述由图像向量表示的第一图像特征的数据库向量的第一匹配数据库向量。 系统或方法可以使用结合第一匹配数据库向量和先前匹配的数据库向量的数据结构来确定包括第一匹配数据库向量和先前匹配的数据库向量的第二数据库向量,并最密切地描述第二 图像片段包括第一个图像片段。 系统或方法可以基于第二数据库向量来确定对象特征。