Abstract:
A system and method for dynamically evaluating latent concepts in unstructured documents is disclosed. A multiplicity of concepts are extracted from a set of unstructured documents into a lexicon. The lexicon uniquely identifies each concept and a frequency of occurrence. A frequency of occurrence representation is created for the documents set. The frequency representation provides an ordered corpus of the frequencies of occurrence of each concept. A subset of concepts is selected from the frequency of occurrence representation filtered against a pre-defined threshold. A group of weighted clusters of concepts selected from the concepts subset is generated. A matrix of best fit approximations is determined for each document weighted against each group of weighted clusters of concepts.
Abstract:
A system and method for grouping similar documents is provided. Frequencies of occurrences are determined for terms and noun phrases within a set of documents. A subset of the documents is selected by removing those documents having terms and noun phrases that fall outside a bounded range of upper and lower conditions for frequency of occurrence. Each of the documents in the subset is mapped to a cluster of documents based on a similarity of the documents to the cluster documents.
Abstract:
A system and method for thematically grouping documents into clusters is provided. Concepts are extracted from a plurality of documents. The concepts include nouns or noun phrases. A number of occurrences for each concept are determined within each document. A bounded range is applied to the concepts and a subset of the concepts is selected by removing the concepts that fall outside the bounded range. The bounded range includes upper edge conditions and lower edge conditions. Themes are generated from the subset of concepts by identifying two or more concepts with common semantic meaning. Clusters of the documents are generated based on the themes.
Abstract:
A system and method for dynamically evaluating latent concepts in unstructured documents is disclosed. A multiplicity of concepts are extracted from a set of unstructured documents into a lexicon. The lexicon uniquely identifies each concept and a frequency of occurrence. A frequency of occurrence representation is created for the documents set. The frequency representation provides an ordered corpus of the frequencies of occurrence of each concept. A subset of concepts is selected from the frequency of occurrence representation filtered against a pre-defined threshold. A group of weighted clusters of concepts selected from the concepts subset is generated. A matrix of best fit approximations is determined for each document weighted against each group of weighted clusters of concepts.
Abstract:
A system and method for grouping similar documents is provided. Frequencies of occurrences are determined for terms and noun phrases within a set of documents. A subset of the documents is selected by removing those documents having terms and noun phrases that fall outside a bounded range of upper and lower conditions for frequency of occurrence. Each of the documents in the subset is mapped to a cluster of documents based on a similarity of the documents to the cluster documents.
Abstract:
A system and method for clustering unstructured documents is provided. Documents having terms with frequencies of occurrence that satisfy upper and lower edge conditions are selected. Concepts are generated for the selected documents. The selected documents are grouped into clusters of the documents. A weight for each of the clusters is evaluated. A similarity value is determined from the frequencies of occurrence for at least one of the terms from the concepts and the cluster weights for each selected document. Each selected document is assigned into one such cluster based on the similarity value of the selected document.
Abstract:
A system and method for dynamically evaluating latent concepts in unstructured documents is disclosed. A multiplicity of concepts are extracted from a set of unstructured documents into a lexicon. The lexicon uniquely identifies each concept and a frequency of occurrence. A frequency of occurrence representation is created for the documents set. The frequency representation provides an ordered corpus of the frequencies of occurrence of each concept. A subset of concepts is selected from the frequency of occurrence representation filtered against a pre-defined threshold. A group of weighted clusters of concepts selected from the concepts subset is generated. A matrix of best fit approximations is determined for each document weighted against each group of weighted clusters of concepts.
Abstract:
A system and method for thematically grouping documents into clusters is provided. Concepts are extracted from a plurality of documents. The concepts include nouns or noun phrases. A number of occurrences for each concept are determined within each document. A bounded range is applied to the concepts and a subset of the concepts is selected by removing the concepts that fall outside the bounded range. The bounded range includes upper edge conditions and lower edge conditions. Themes are generated from the subset of concepts by identifying two or more concepts with common semantic meaning. Clusters of the documents are generated based on the themes.
Abstract:
A system and method for clustering unstructured documents is provided. Documents having terms with frequencies of occurrence that satisfy upper and lower edge conditions are selected. Concepts are generated for the selected documents. The selected documents are grouped into clusters of the documents. A weight for each of the clusters is evaluated. A similarity value is determined from the frequencies of occurrence for at least one of the terms from the concepts and the cluster weights for each selected document. Each selected document is assigned into one such cluster based on the similarity value of the selected document.
Abstract:
A system and method for reorienting clusters within a display is provided. Clusters are maintained within a display. Each cluster includes a center located at a distance relative to a common origin for the display and a radius measured from the center. A pair of the clusters is selected and a bounding region is determined for each cluster in the pair by forming a pair of tangent vectors about the cluster and originating at the common origin. The bounding regions of the clusters in the pair are compared. The distance from the common origin of one of the clusters in the pair is increased upon overlap of the bounding regions as a perspective-corrected distance, which is determined as a function of the distances, the radii, and an angle between tangent vectors. The one cluster is moved to reorient the cluster's center at the perspective-corrected distance in the display.