Abstract:
Provided are a curing accelerator for an oxidative polymerization type unsaturated resin having a high curing accelerating ability, and a printing ink and a coating material. Specifically, there are provided a curing accelerator for an oxidative polymerization type unsaturated resin, containing a metal complex (β) having an anion compound (α) represented by the following structural formula (1-1) or (1-2) as a ligand: wherein R1 is any one of a hydroxyl group, an amino group, a nitro group, a nitroso group, a sulfo group, a halogen atom, a hydrocarbon group which may have a substituent, a hydrocarbon oxy group which may have a substituent, and a hydrocarbon oxycarbonyl group which may have a substituent, m is 0 or an integer of 1 to 3, n is 0 or an integer of 1 to 6, and X is any one of a carboxylate group, a hydrogen atom, and the R1 group.
Abstract:
Provided are a curing accelerator for an oxidative polymerization type unsaturated resin having a high curing accelerating ability, and a printing ink and a coating material each including the curing accelerator for an oxidative polymerization type unsaturated resin. Specifically, there are provided a curing accelerator for an oxidative polymerization type unsaturated resin containing a metal salt (A) and an imidazole compound (B), a curing accelerator for an oxidative polymerization type unsaturated resin containing a metal salt (A), a ligand compound (C) and an imidazole compound (B), a curing accelerator for an oxidative polymerization type unsaturated resin containing a metal complex (D) and an imidazole compound (B), and a printing ink and a coating material using the curing accelerator for an oxidative polymerization type unsaturated resin.
Abstract:
To provide a curing accelerator for an oxidatively polymerizable unsaturated resin which can decrease the amount of cobalt metal soap used and has curing performance equal to or higher than excellent curing performance of the cobalt metal soap, and a printing ink and a coating material using the same. A curing accelerator for an oxidatively polymerizable unsaturated resin including a manganese or cobalt complex (α) containing quinolinol compound ions represented by Structural Formula (1) as a ligand, and a printing ink and a coating material including the curing accelerator. In the formula, R1 is any of a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a hydroxyl group, an amino group, a nitro group, a nitroso group, a sulfo group, and a halogen atom, and n is an integer of 1 to 6.
Abstract:
There is provided a highly versatile curing accelerator for an oxidative polymerization-type unsaturated resin. There are also provided a printing ink and a coating material that use the above curing accelerator. Specifically, the curing accelerator for an oxidative polymerization-type unsaturated resin that is used contains a fatty acid manganese salt (A) and a compound (B) represented by formula (1) below, (wherein R1 and R4 are each a hydrogen atom, a hydrocarbon group, a hydrocarbonoxy group, or an amino group, R2 and R5 are each a hydrogen atom, a hydrocarbon group, a hydrocarbonoxy group, a hydrocarbonoxycarbonyl group, a cyano group, a nitro group, or a halogen atom, R3 and R6 are each a hydrogen atom or a hydrocarbon group, and R7 is a divalent hydrocarbon group, and wherein R1 and R2 may form a ring, and R4 and R5 may form a ring).
Abstract:
A polymerization catalyst composition contains a rare earth element carboxylate, a phosphate ester represented by the following general formula (1):
(wherein Rs are each independently an alkyl group having 5 to 20 carbon atoms), and water.
Abstract:
To provide a curing accelerator for an oxidatively polymerizable unsaturated resin which can decrease the amount of cobalt metal soap used and has curing performance equal to or higher than excellent curing performance of the cobalt metal soap, and a printing ink and a coating material using the same. A curing accelerator for an oxidatively polymerizable unsaturated resin including a manganese or cobalt complex (α) containing quinolinol compound ions represented by Structural Formula (1) as a ligand, and a printing ink and a coating material including the curing accelerator. In the formula, R1 is any of a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a hydroxyl group, an amino group, a nitro group, a nitroso group, a sulfo group, and a halogen atom, and n is an integer of 1 to 6.
Abstract:
There is provided a highly versatile curing accelerator for an oxidative polymerization-type unsaturated resin. There are also provided a printing ink and a coating material that use the above curing accelerator. Specifically, the curing accelerator for an oxidative polymerization-type unsaturated resin that is used contains a fatty acid manganese salt (A) and a compound (B) represented by formula (1) below, (wherein R1 and R4 are each a hydrogen atom, a hydrocarbon group, a hydrocarbonoxy group, or an amino group, R2 and R5 are each a hydrogen atom, a hydrocarbon group, a hydrocarbonoxy group, a hydrocarbonoxycarbonyl group, a cyano group, a nitro group, or a halogen atom, R3 and R6 are each a hydrogen atom or a hydrocarbon group, and R7 is a divalent hydrocarbon group, and wherein R1 and R2 may form a ring, and R4 and R5 may form a ring).