Abstract:
A heating plate includes: a pair of glass plates; a conductive pattern disposed between the pair of glass plates and defining a plurality of opening areas; and a joint layer disposed between the conductive pattern and at least one of the pair of glass plates; wherein the conductive pattern includes a plurality of connection elements that extend between two branch points to define the opening areas; and a rate of the connection elements, which are straight line segments connecting the two branch points, relative to the plurality of connection elements, is less than 20%.
Abstract:
A heating electrode device for energizing the heating a glass is provided. A heating electrode device includes a plurality of heat-generating conducting bodies extending as having a rectangular cross section and arranged in a direction different from the extending direction. In the cross section perpendicular to the extending direction of the heat-generating conducting body, when it is assumed that a thickness that is a size in a direction perpendicular to an arrangement direction be H and a size of a lager side of sides parallel to the arrangement direction be WB, H/WB>1.0 is satisfied.
Abstract:
A patterned conductor that includes a metal linear conductor positioned on one placement surface that has a main cut surface orthogonal to its longitudinal direction, a plurality of metal crystal grains. In the main cut surface of thereof, a metal crystal grain(s) having a length h0 along a normal direction to the placement surface, which length is larger than one third of a height H of the linear conductor along the normal direction to the placement surface. A minimum value of a ratio (h0/w0), which is a ratio of the length h0 of the metal crystal grain(s) along the normal direction to the placement surface with respect to a length w0 along the placement surface, is not less than 1.2.
Abstract:
A heating plate 10 includes: a pair of glass plates 11, 12; a conductive pattern 40, 70 disposed between the pair of glass plates 11, 12 and defining a plurality of opening areas 43, 73; and a joint layer 13, 14 disposed between the conductive pattern 40, 70 and at least one of the pair of glass plates 11, 12; wherein the conductive pattern 40, 70 includes a plurality of connection elements 44, 74 that extend between two branch points 42, 72 to define the opening areas 43, 73; and a total value of lengths of straight line segments connecting the two branch points 42, 72 is less than 20% of a total value of the plurality of connection elements 44, 74.
Abstract:
A heating plate includes: a pair of glass plates; a conductive pattern disposed between the pair of glass plates and defining a plurality of opening areas; and a joint layer disposed between the conductive pattern and at least one of the pair of glass plates; wherein the conductive pattern includes a plurality of connection elements that extend between two branch points to define the opening areas; and a rate of the connection elements, which are straight line segments connecting the two branch points, relative to the plurality of connection elements, is less than 20%.
Abstract:
A transparent heating element is disposed to face a sensor. The transparent heating element has a pair of bus bars spaced apart from each other in a first direction, and a plurality of coupling conductors coupling the pair of bus bars. The coupling conductors are arranged in a second direction not parallel to the first direction. The coupling conductor is folded back at least twice in the first direction.
Abstract:
A heating electrode device for energizing the heating a glass is provided. A heating electrode device includes a plurality of heat-generating conducting bodies extending as having a rectangular cross section and arranged in a direction different from the extending direction. In the cross section perpendicular to the extending direction of the heat-generating conducting body, when it is assumed that a thickness that is a size in a direction perpendicular to an arrangement direction be H and a size of a lager side of sides parallel to the arrangement direction be WB, H/WB>1.0 is satisfied.
Abstract:
A heating electrode device for energizing the heating a glass is provided. A heating electrode device includes a plurality of heat-generating conducting bodies extending as having a rectangular cross section and arranged in a direction different from the extending direction. In the cross section perpendicular to the extending direction of the heat-generating conducting body, when it is assumed that a thickness that is a size in a direction perpendicular to an arrangement direction be H and a size of a lager side of sides parallel to the arrangement direction be WB, H/WB>1.0 is satisfied.
Abstract:
A heating plate 10 includes: a pair of glass plates 11, 12; a conductive pattern 40, 70 disposed between the pair of glass plates 11, 12 and defining a plurality of opening areas 43, 73; and a joint layer 13, 14 disposed between the conductive pattern 40, 70 and at least one of the pair of glass plates 11, 12; wherein the conductive pattern 40, 70 includes a plurality of connection elements 44, 74 that extend between two branch points 42, 72 to define the opening areas 43, 73; and a rate of the connection elements 44, 74, which are straight line segments connecting the two branch points 42, 72, relative to the plurality of connection elements 44, 74, is less than 20%.
Abstract:
A heating electrode device for energizing the heating a glass is provided. A heating electrode device includes a plurality of heat-generating conducting bodies extending as having a rectangular cross section and arranged in a direction different from the extending direction. In the cross section perpendicular to the extending direction of the heat-generating conducting body, when it is assumed that a thickness that is a size in a direction perpendicular to an arrangement direction be H and a size of a lager side of sides parallel to the arrangement direction be WB, H/WB>1.0 is satisfied.