摘要:
An ink system is disclosed which includes a broken bag sensing feature for use with conductive ink. The ink system preferably includes an ink containment bag with a metallized layer insulated from the bag interior; a first electrical contact with the metallized layer; a second electrical contact communicating with conductive ink contained within the ink containment bag; an electrical connection between the first and second electrical contacts; and a measurement device for measuring an electrical characteristic between the first and second contacts.
摘要:
Techniques are disclosed for improving pressure sensor shock robustness in fluid containment devices by providing a mechanical filter configured to prevent high-frequency pressure shocks from damaging the pressure sensor. One approach includes a body of elastomeric material disposed on an external surface of the sensor. Another approach is a porous plug in a fluid pathway leading to the sensor. Yet another approach is to provide a seal structure with a labyrinth fluid path.
摘要:
Techniques are disclosed for improving pressure sensor shock robustness in fluid containment devices by providing a mechanical filter configured to prevent high-frequency pressure shocks from damaging the pressure sensor. One approach includes a body of elastomeric material disposed on an external surface of the sensor. Another approach is a porous plug in a fluid pathway leading to the sensor. Yet another approach is to provide a seal structure with a labyrinth fluid path.
摘要:
A package assembly for an ink-jet ink reservoir. The package assembly includes an ink-jet ink reservoir having a fluid orifice, a label removably and adhesively bonded to the reservoir and sealing the orifice, and pouch material bonded to the label and forming a package around the reservoir. In another aspect, the label has a lateral margin of deadened adhesive located at one end of the label insuring that when the pouch is removed from around the reservoir, the label is removed as well.
摘要:
Removable fluid port seals for fluid containers that are configured for insertion into a receiving station within a fluid utilizing system are disclosed. An exemplary use of the fluid port seal is to seal replaceable ink containers for use in ink jet printers, although the present invention is not limited to a specific field of application. The fluid port seal has a tab portion which extends beyond the container and interferes with installation of the container into the receiving station if an installer attempts to install the fluid container in the utilizing system without first removing the seal.
摘要:
Embodiments of the present invention comprise geometric features in the fluid interconnect region of an ink container which inhibit residual ink from contacting a removable seal on the container or the fingers and clothing of the container installer. The features comprise a fluid accumulator and capillary break.
摘要:
Venting mechanisms are provided for allowing air to replace fluid in the sealed fluid interconnect port of a container substantially filled with a capillary material, thus enabling absorption of residual fluid into the container capillary material. In one embodiment, the venting mechanisms include small ribs formed on the floor of the container body to space the capillary material away from the floor, thus allowing air to flow along the container floor to the interconnect port.
摘要:
A replaceable ink container for providing ink to a printhead of a printing system. The ink container has a fluid outlet configured for connection with the printhead. The ink container includes an ink reservoir having a first capillary member having a first capillary pressure, and a second capillary member having a second capillary pressure that is greater than the first capillary pressure such that the second capillary member has a higher resistance to ink flow than the first capillary member. An ink level sensor senses a low ink condition of the ink reservoir. The ink level sensor includes a C-shaped tube having first and second ports that fluidically communicate with only the second capillary member. The first and second capillary members abut one another at a capillary member interface, and the first port is positioned immediately adjacent to this capillary member interface. Placement of the first port immediately adjacent to the capillary member interface minimizes the ink level variation between an ink drained portion of the second capillary member and an ink filled portion of the second capillary member. A light detector detects when the C-shaped tube is free of ink which defines the low ink condition of the ink reservoir.