Abstract:
A video conference endpoint includes one or more cameras to capture video of different views and a microphone array to sense audio. One or more preset views are defined. The endpoint detects faces in the captured video and active audio sources from the sensed audio. The endpoint detects any active talker detected faces that coincide positionally with detected active audio sources, and also detects whether any active talker is in one of the preset views. Based on whether an active talker is detected in any of the preset views, the endpoint switches between capturing video of one of the preset views, and capturing video of a dynamic view.
Abstract:
A video conference endpoint includes a camera to capture video and a microphone array to sense audio. One or more preset views are defined. Images in the captured video are processed with a face detection algorithm to detect faces. Active talkers are detected from the sensed audio. The camera is controlled to capture video from the preset views, and from dynamic views created without user input and which include a dynamic overview and a dynamic close-up view. The camera is controlled to dynamically adjust each of the dynamic views to track changing positions of detected faces over time, and dynamically switch the camera between the preset views, the dynamic overview, and the dynamic close-up view over time based on positions of the detected faces and the detected active talkers relative to the preset views and the dynamic views.
Abstract:
In one embodiment, a method is provided to intelligently frame groups of participants in a meeting. This gives a more pleasing experience with fewer switches, better contextual understanding, and more natural framing, as would be seen in a video production made by a human director. Furthermore, in accordance with another embodiment, conversational framing techniques are provided. During speaker tracking, when two local participants are addressing each other, a method is provided to show a close-up framing showing both participants. By evaluating the direction participants are looking and a speaker history, it is determined if there is a local discussion going on, and an appropriate framing is selected to give far-end participants the most contextually rich experience.
Abstract:
In one embodiment, a method is provided to intelligently frame groups of participants in a meeting. This gives a more pleasing experience with fewer switches, better contextual understanding, and more natural framing, as would be seen in a video production made by a human director. Furthermore, in accordance with another embodiment, conversational framing techniques are provided. During speaker tracking, when two local participants are addressing each other, a method is provided to show a close-up framing showing both participants. By evaluating the direction participants are looking and a speaker history, it is determined if there is a local discussion going on, and an appropriate framing is selected to give far-end participants the most contextually rich experience.
Abstract:
In one embodiment, a method is provided to intelligently frame groups of participants in a meeting. This gives a more pleasing experience with fewer switches, better contextual understanding, and more natural framing, as would be seen in a video production made by a human director. Furthermore, in accordance with another embodiment, conversational framing techniques are provided. During speaker tracking, when two local participants are addressing each other, a method is provided to show a close-up framing showing both participants. By evaluating the direction participants are looking and a speaker history, it is determined if there is a local discussion going on, and an appropriate framing is selected to give far-end participants the most contextually rich experience.
Abstract:
In one embodiment, a method is provided to intelligently frame groups of participants in a meeting. This gives a more pleasing experience with fewer switches, better contextual understanding, and more natural framing, as would be seen in a video production made by a human director. Furthermore, in accordance with another embodiment, conversational framing techniques are provided. During speaker tracking, when two local participants are addressing each other, a method is provided to show a close-up framing showing both participants. By evaluating the direction participants are looking and a speaker history, it is determined if there is a local discussion going on, and an appropriate framing is selected to give far-end participants the most contextually rich experience.
Abstract:
In one embodiment, a method is provided to intelligently frame groups of participants in a meeting. This gives a more pleasing experience with fewer switches, better contextual understanding, and more natural framing, as would be seen in a video production made by a human director. Furthermore, in accordance with another embodiment, conversational framing techniques are provided. During speaker tracking, when two local participants are addressing each other, a method is provided to show a close-up framing showing both participants. By evaluating the direction participants are looking and a speaker history, it is determined if there is a local discussion going on, and an appropriate framing is selected to give far-end participants the most contextually rich experience.
Abstract:
A video conference endpoint includes a camera to capture video and a microphone array to sense audio. One or more preset views are defined. Images in the captured video are processed with a face detection algorithm to detect faces. Active talkers are detected from the sensed audio. The camera is controlled to capture video from the preset views, and from dynamic views created without user input and which include a dynamic overview and a dynamic close-up view. The camera is controlled to dynamically adjust each of the dynamic views to track changing positions of detected faces over time, and dynamically switch the camera between the preset views, the dynamic overview, and the dynamic close-up view over time based on positions of the detected faces and the detected active talkers relative to the preset views and the dynamic views.
Abstract:
A video conference endpoint includes one or more cameras to capture video of different views and a microphone array to sense audio. One or more preset views are defined. The endpoint detects faces in the captured video and active audio sources from the sensed audio. The endpoint detects any active talker detected faces that coincide positionally with detected active audio sources, and also detects whether any active talker is in one of the preset views. Based on whether an active talker is detected in any of the preset views, the endpoint switches between capturing video of one of the preset views, and capturing video of a dynamic view.