Abstract:
Systems, methods, and computer-readable storage media are provided for managing application traffic. A routing policy defines the data flow path between the client device (which uses a virtual private network (VPN) client) and the appropriate network-based service. Based on various factors associated with the user, the client device, and the destination (e.g. network-based service), the routing policy will direct the VPN client to communicate with either a public DNS (via the public Internet) or to a private DNS (via the private Intranet). The resulting IP addresses will be used to establish a particular route (either over a public Internet or private Intranet) between the client device and the network-based service in accordance to the routing policy.
Abstract:
A baseboard management controller (BMC) can physically partition the computing resources of a physical host into different resource groups for concurrently running a different operating system per resource group. The BMC can allocate a first processor of the host to a first resource group and a second processor of the host to a second resource group. The BMC can separate the memory of the host into a first memory range for the first processor and a second memory range for the second processor, and the BMC can limit access to the first memory range to the first processor and limit access to the second memory range to the second processor. The BMC can also distribute physical or virtual peripheral devices of the host between the first processor and the second processor.
Abstract:
The present disclosure involves systems and methods for (a) model distributed applications for multi-cloud deployments, (b) derive, by way of policy, executable orchestrator descriptors, (c) model underlying (cloud) services (private, public, server-less and virtual-private) as distributed applications themselves, (d) dynamically create such cloud services if these are unavailable for the distributed application, (e) manage those resources equivalent to the way distributed applications are managed; and (f) present how these techniques are stackable. As applications may be built on top of cloud services, which themselves can be built on top of other cloud services (e.g., virtual private clouds on public cloud, etc.) even cloud services themselves may be considered applications in their own right, thus supporting putting cloud services on top of other cloud services.
Abstract:
A baseboard management controller (BMC) can physically partition the computing resources of a physical host into different resource groups for concurrently running a different operating system per resource group. The BMC can allocate a first processor of the host to a first resource group and a second processor of the host to a second resource group. The BMC can separate the memory of the host into a first memory range for the first processor and a second memory range for the second processor, and the BMC can limit access to the first memory range to the first processor and limit access to the second memory range to the second processor. The BMC can also distribute physical or virtual peripheral devices of the host between the first processor and the second processor.
Abstract:
In one embodiment, a method includes receiving a packet associated with a flow at a network device, classifying the packet at the network device based on information received from a policy layer, inserting a Network Address Translation (NAT) indicator for the flow into the packet, and transmitting the packet in a service chain comprising network address translation. The NAT indicator is associated with the flows before and after network address translation to provide symmetry between the service chain and a return traffic service chain. An apparatus and logic are also disclosed herein.
Abstract:
Systems, methods, and computer-readable storage media are provided for managing application traffic. A routing policy defines the data flow path between the client device (which uses a virtual private network (VPN) client) and the appropriate network-based service. Based on various factors associated with the user, the client device, and the destination (e.g. network-based service), the routing policy will direct the VPN client to communicate with either a public DNS (via the public Internet) or to a private DNS (via the private Intranet). The resulting IP addresses will be used to establish a particular route (either over a public Internet or private Intranet) between the client device and the network-based service in accordance to the routing policy.
Abstract:
The present disclosure involves systems and methods for compiling abstract application and associated service models into deployable descriptors under control of a series of policies, maintaining and enforcing dependencies between policies and applications/services, and deploying policies as regularly managed policy applications themselves. In particular, an orchestration system includes one or more policy applications that are executed to apply policies to a deployable application or service in a computing environment. In general, the orchestration system operates to create one or more solution models for execution of an application on one or more computing environments (such as one or more cloud computing environments) based on a received request for deployment.
Abstract:
The present disclosure involves systems and methods for (a) model distributed applications for multi-cloud deployments, (b) derive, by way of policy, executable orchestrator descriptors, (c) model underlying (cloud) services (private, public, server-less and virtual-private) as distributed applications themselves, (d) dynamically create such cloud services if these are unavailable for the distributed application, (e) manage those resources equivalent to the way distributed applications are managed; and (f) present how these techniques are stackable. As applications may be built on top of cloud services, which themselves can be built on top of other cloud services (e.g., virtual private clouds on public cloud, etc.) even cloud services themselves may be considered applications in their own right, thus supporting putting cloud services on top of other cloud services.
Abstract:
The present disclosure involves systems and methods for compiling abstract application and associated service models into deployable descriptors under control of a series of policies, maintaining and enforcing dependencies between policies and applications/services, and deploying policies as regularly managed policy applications themselves. In particular, an orchestration system includes one or more policy applications that are executed to apply policies to a deployable application or service in a computing environment. In general, the orchestration system operates to create one or more solution models for execution of an application on one or more computing environments (such as one or more cloud computing environments) based on a received request for deployment.
Abstract:
In one embodiment, a method includes receiving a packet associated with a flow at a network device, classifying the packet at the network device based on information received from a policy layer, inserting a Network Address Translation (NAT) indicator for the flow into the packet, and transmitting the packet in a service chain comprising network address translation. The NAT indicator is associated with the flows before and after network address translation to provide symmetry between the service chain and a return traffic service chain. An apparatus and logic are also disclosed herein.