Abstract:
In one embodiment, a source node monitors a quality of a primary link, and forwards one or more duplicate copies of a packet in response to poor quality of the primary link. Specifically, forwarding generally comprises transmitting a first copy of the packet on the primary link with an indication of duplicate copies, and transmitting a second copy of the packet on a backup link with an indication of duplicate copies. In another embodiment, an intermediate node receives a first copy of a packet with an indication of duplicate copies, and stores an identifier of the first copy of the packet in response to the indication. Upon receiving a second copy of the packet with the indication of duplicate copies, the node determines whether the identifier of the second copy matches the stored identifier of the first copy, such that in response to a match, the second copy is dropped.
Abstract:
In one embodiment, a router establishes a serial-over-TCP/IP (Transmission Control Protocol/Internet Protocol) communication session between terminal units using raw-TCP encapsulation. For the session, the router maps serial characters to TCP out-of-band (OOB) communication fields, maps serial flow control signals to TCP/IP receiver-window advertisements, and dynamically adjusts a TCP/IP priority based on serial payload priority. Accordingly, the router may thus communicate data over the serial-over-TCP/IP session based on the mappings and priority.
Abstract:
In one embodiment, a first stationary router may detect a disconnected backhaul link to a destination. In response to detecting the disconnected backhaul link, the first stationary router may send a message to a first traveling mobile device, to cause the message to be sent toward the destination via a second stationary router. The second stationary router may receive the message from the first traveling mobile device, and in response to forwarding the message to the destination over its connected backhaul link, may send an acknowledgment toward the first stationary router via a second traveling mobile device. The first stationary router may then, in response to receiving the acknowledgment, cease sending copies of the message to other traveling mobile devices.
Abstract:
In one embodiment, a source node monitors a quality of a primary link, and forwards one or more duplicate copies of a packet in response to poor quality of the primary link. Specifically, forwarding generally comprises transmitting a first copy of the packet on the primary link with an indication of duplicate copies, and transmitting a second copy of the packet on a backup link with an indication of duplicate copies. In another embodiment, an intermediate node receives a first copy of a packet with an indication of duplicate copies, and stores an identifier of the first copy of the packet in response to the indication. Upon receiving a second copy of the packet with the indication of duplicate copies, the node determines whether the identifier of the second copy matches the stored identifier of the first copy, such that in response to a match, the second copy is dropped.
Abstract:
In one embodiment, a router establishes a serial-over-TCP/IP (Transmission Control Protocol/Internet Protocol) communication session between terminal units using raw-TCP encapsulation. For the session, the router maps serial characters to TCP out-of-band (OOB) communication fields, maps serial flow control signals to TCP/IP receiver-window advertisements, and dynamically adjusts a TCP/IP priority based on serial payload priority. Accordingly, the router may thus communicate data over the serial-over-TCP/IP session based on the mappings and priority.