Abstract:
A system and method supporting efficient, scalable stateful switchover of transport layer connections in a telecommunications network element. One method involves receiving, at a network element comprising an active transport protocol process coupled to a standby protocol process, a request to configure a first transport layer connection maintained at the active transport protocol process for stateful switchover; receiving an event associated with the first transport layer connection; creating a message containing replicated event information based on the received event; sending the message to the standby transport protocol process; and processing the message at the standby transport protocol process, wherein the standby transport protocol process replicates state information for the first connection.
Abstract:
In one embodiment, a router selects a particular peer from an original update group used with an Exterior Gateway Protocol (EGP) such as Border Gateway Protocol (BGP). The original update group includes a plurality of peers of the router that share a same outbound policy and that receive common update messages, from the router, of routing table information. The router determines that the particular peer is a potential slow peer based on a first type of indicia, wherein a slow peer is a peer that cannot keep up with a rate at which the router generates update messages over a prolonged period of time. The router confirms that one or more second types of indicia are consistent with the particular peer being a slow peer. In response to the confirmation, the router determines that the particular peer is a slow peer.
Abstract:
In one embodiment, an apparatus comprises logic for optimizing return traffic paths using network address translation (NAT). The logic is operable to receive outbound data from a source node in a source network, and to replace a source address in a source address field in the outbound data with a first address from a first address pool associated with a first connection. The logic is operable to determine that return traffic on the first connection needs to be switched over to a second connection, where a second address pool is associated with the second connection. The logic is operable to generate a mapping that associates the first address with a second address from the second address pool and, based on the mapping, to replace the first address in the source address field in the outbound data with the second address. The logic is also operable to send the outbound data to the destination node over the second connection.
Abstract:
In one embodiment, a router selects a particular peer from an original update group used with an Exterior Gateway Protocol (EGP) such as Border Gateway Protocol (BGP). The original update group includes a plurality of peers of the router that share a same outbound policy and that receive common update messages, from the router, of routing table information. The router determines that the particular peer is a potential slow peer based on a first type of indicia, wherein a slow peer is a peer that cannot keep up with a rate at which the router generates update messages over a prolonged period of time. The router confirms that one or more second types of indicia are consistent with the particular peer being a slow peer. In response to the confirmation, the router determines that the particular peer is a slow peer.
Abstract:
In one embodiment, an apparatus comprises logic for optimizing return traffic paths using network address translation (NAT). The logic is operable to receive outbound data from a source node in a source network, and to replace a source address in a source address field in the outbound data with a first address from a first address pool associated with a first connection. The logic is operable to determine that return traffic on the first connection needs to be switched over to a second connection, where a second address pool is associated with the second connection. The logic is operable to generate a mapping that associates the first address with a second address from the second address pool and, based on the mapping, to replace the first address in the source address field in the outbound data with the second address. The logic is also operable to send the outbound data to the destination node over the second connection.