Abstract:
A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.
Abstract:
A turbine blade (10) including an airfoil (12) having multiple interior wall portions (70) each separating at least one chamber from another one of multiple chambers (46, 48, 50, 58, 60). In one embodiment a first wall portion (70-2) between first and second chambers (60, 52) includes first and second pluralities of flow paths (86P, 86S) extending through the first wall portion. The first wall portion includes a first region R1 having a first thickness, t, measurable as a distance between the chambers. One of the paths extends a first path distance, d, as measured from an associated path opening (78) in the first chamber (60), through the first region and to an exit opening (82) in the second chamber (52) which path distance is greater than the first thickness.
Abstract:
A turbine blade (10) including an airfoil (12) having multiple interior wall portions (70) each separating at least one chamber from another one of multiple chambers (46, 48, 50, 58, 60). In one embodiment a first wall portion (70-2) between first and second chambers (60, 52) includes first and second pluralities of flow paths (86P, 86S) extending through the first wall portion. The first wall portion includes a first region R1 having a first thickness, t, measurable as a distance between the chambers. One of the paths extends a first path distance, d, as measured from an associated path opening (78) in the first chamber (60), through the first region and to an exit opening (82) in the second chamber (52) which path distance is greater than the first thickness.
Abstract:
A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.
Abstract:
A cooling arrangement (82) for a gas turbine engine component, the cooling arrangement (82) having a plurality of rows (92, 94, 96) of airfoils (98), wherein adjacent airfoils (98) within a row (92, 94, 96) define segments (110, 130, 140) of cooling channels (90), and wherein outlets (114, 134) of the segments (110, 130) in one row (92, 94) align aerodynamically with inlets (132, 142) of segments (130, 140) in an adjacent row (94, 96) to define continuous cooling channels (90) with non continuous walls (116, 120), each cooling channel (90) comprising a serpentine shape.
Abstract:
A cooling channel (36, 36B) cools an exterior surface (40 or 42) or two opposed exterior surfaces (40 and 42). The channel has a near-wall inner surface (48, 50) with a width (W1). Interior side surfaces (52, 54) may converge to a reduced channel width (W2). The near-wall inner surface (48, 50) may have fins (44) aligned with a coolant flow (22). The fins may highest at mid-width of the near-wall inner surface. A two-sided cooling channel (36) may have two near-wall inner surfaces (48, 50) parallel to two respective exterior surfaces (40, 42), and may have an hourglass shaped transverse sectional profile. The tapered channel width (W1, W2) and the fin height profile (56A, 56B) increases cooling flow (22) into the corners (C) of the channel for more uniform and efficient cooling.
Abstract:
A ceramic casting core, including: a plurality of rows (162, 166, 168) of gaps (164), each gap (164) defining an airfoil shape; interstitial core material (172) that defines and separates adjacent gaps (164) in each row (162, 166, 168); and connecting core material (178) that connects adjacent rows (170, 174, 176) of interstitial core material (172). Ends of interstitial core material (172) in one row (170, 174, 176) align with ends of interstitial core material (172) in an adjacent row (170, 174, 176) to form a plurality of continuous and serpentine shaped structures each including interstitial core material (172) from at least two adjacent rows (170, 174, 176) and connecting core material (178).
Abstract:
A squealer tip formed from a pressure side rib and a suction side rib extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side ribs may be positioned along the pressure side and the suction side of the turbine blade, respectively. The pressure and suction side ribs may include chamfered leading edges with film cooling holes having exhaust outlets positioned therein. The film cooling holes may be configured to be diffusion cooling holes with one or more tapered sections for reducing the velocity of cooling fluids and increasing the size of the convective surfaces.
Abstract:
A squealer tip formed from a pressure side rib and a suction side rib extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side ribs may be positioned along the pressure side and the suction side of the turbine blade, respectively. The pressure and suction side ribs may include chamfered leading edges with film cooling holes having exhaust outlets positioned therein. The film cooling holes may be configured to be diffusion cooling holes with one or more tapered sections for reducing the velocity of cooling fluids and increasing the size of the convective surfaces.
Abstract:
A component in a gas turbine engine includes an airfoil extending radially outwardly from a platform associated with the airfoil. The airfoil includes opposed pressure and suction sidewalls, which converge at a first location defined at a leading edge of the airfoil and at a second location defined at a trailing edge of the airfoil opposed from the leading edge. The component includes a built-up surface adjacent to the leading edge at an intersection between the pressure sidewall and the platform, and at least one cooling passage at least partially within the built-up surface at the intersection between the pressure sidewall and the platform. The at least one cooling passage is in fluid communication with a main cooling channel within the airfoil and has an outlet at the platform for providing cooling fluid directly from the main cooling channel to the platform.