Predicting tumor prognoses based on a combination of radiomic and clinico-pathological features

    公开(公告)号:US11610304B2

    公开(公告)日:2023-03-21

    申请号:US17068089

    申请日:2020-10-12

    Abstract: Embodiments discussed herein facilitate building and/or employing a clinical-radiomics score for determining tumor prognoses based on a combination of a radiomics risk score generated by a machine learning model and clinico-pathological factors. One example embodiment can perform actions comprising: accessing a medical imaging scan of a tumor; segmenting a peri-tumoral region around the tumor; extracting one or more intra-tumoral radiomic features from the tumor and one or more peri-tumoral radiomic features from the peri-tumoral region; providing the one or more intra-tumoral radiomic features and the one or more peri-tumoral radiomic features to a trained machine learning model; receiving a radiomic risk score (RRS) associated with the tumor from the machine learning model; determining a clinical-radiomics score based on the RRS and one or more clinico-pathological factors; and generating a prognosis for the tumor based on the clinical-radiomics score.

    PREDICTING TUMOR PROGNOSES BASED ON A COMBINATION OF RADIOMIC AND CLINICO-PATHOLOGICAL FEATURES

    公开(公告)号:US20210110540A1

    公开(公告)日:2021-04-15

    申请号:US17068089

    申请日:2020-10-12

    Abstract: Embodiments discussed herein facilitate building and/or employing a clinical-radiomics score for determining tumor prognoses based on a combination of a radiomics risk score generated by a machine learning model and clinico-pathological factors. One example embodiment can perform actions comprising: accessing a medical imaging scan of a tumor; segmenting a peri-tumoral region around the tumor; extracting one or more intra-tumoral radiomic features from the tumor and one or more peri-tumoral radiomic features from the peri-tumoral region; providing the one or more intra-tumoral radiomic features and the one or more peri-tumoral radiomic features to a trained machine learning model; receiving a radiomic risk score (RRS) associated with the tumor from the machine learning model; determining a clinical-radiomics score based on the RRS and one or more clinico-pathological factors; and generating a prognosis for the tumor based on the clinical-radiomics score.

    COMBINATION OF RADIOMIC AND PATHOMIC FEATURES IN THE PREDICTION OF PROGNOSES FOR TUMORS

    公开(公告)号:US20210110541A1

    公开(公告)日:2021-04-15

    申请号:US17068103

    申请日:2020-10-12

    Abstract: Embodiments discussed herein facilitate building and/or employing model(s) for determining tumor prognoses based on a combination of radiomic features and pathomic features. One example embodiment can perform actions comprising: providing, to a first machine learning model, at least one of: one or more intra-tumoral radiomic features associated with a tumor or one or more peri-tumoral radiomic features associated with a peri-tumoral region around the tumor; receiving a first predicted prognosis associated with the tumor from the first machine learning model; providing, to a second machine learning model, one or more pathomic features associated with the tumor; receiving a second predicted prognosis associated with the tumor from the second machine learning model; and generating a combined prognosis associated with the tumor based on the first predicted prognosis and the second predicted prognosis.

Patent Agency Ranking