Abstract:
A method for analyzing a subject tooth. The method includes obtaining volume image data including at least the subject tooth and segments the subject tooth from within the volume data according to one or more operator instructions. An index is generated that is indicative of a suspected fracture or lesion identified for the segmented subject tooth. The subject tooth is displayed with the suspected fracture or lesion highlighted. The generated index also displays.
Abstract:
Method and/or apparatus embodiments can process volume image data of a subject. An exemplary method includes obtaining a first group of two-dimensional radiographic images of the subject, wherein each of the images is obtained with a detector and a radiation source at a different scan angle. The method arranges image data from the first group of images in an image stack so that corresponding pixel data from the detector is in register for each of the images in the image stack. Pixels that represent metal objects are segmented from the image stack and data replaced for at least some of the segmented pixels to generate a second group of modified two-dimensional radiographic images. The second group of images is combined with the first group to generate a three-dimensional volume image according to the combined images and an image slice from the three-dimensional volume image is displayed.
Abstract:
A method for reporting bone mineral density values for a patient, the method executed at least in part by a computer includes accessing a 3-D volume image that includes at least bone content and background. A 3-D bone region is automatically segmented from the background to generate a 3-D bone volume image having a plurality of voxels. One or more bone mineral density values are computed from voxel values of the 3-D bone volume image. A 3-D mapping of the one or more computed bone mineral density values is generated and displayed, stored, or transmitted.