Abstract:
An apparatus can include a congestion controller at a source endpoint node of a network that is configured to send substantially real-time media data at a variable sending rate to another endpoint node via the network. The congestion controller can be configured to compute the sending rate as a function of a predetermined target delay and feedback from the other endpoint node that includes a receive delay time for packets of the substantially real-time media data to be received at the other endpoint node from the source endpoint node.
Abstract:
Congestion control may be provided. A set of rules may allow a congestion control process to switch from delay-mode to loss-mode (e.g., in the presence of loss-based flows) and back to delay-mode (e.g., when loss-based flows stop). Fairness properties of this set of rules may include that the resulting flows may be fair to each other and the flows may also be fair when competing with loss-based flows. Many flows that may be deadlocked in loss-mode (e.g., in the absence of other genuine loss-based flows) may be helped to switch back to delay-mode.
Abstract:
Congestion control may be provided. A set of rules may allow a congestion control process to switch from delay-mode to loss-mode (e.g., in the presence of loss-based flows) and back to delay-mode (e.g., when loss-based flows stop). Fairness properties of this set of rules may include that the resulting flows may be fair to each other and the flows may also be fair when competing with loss-based flows. Many flows that may be deadlocked in loss-mode (e.g., in the absence of other genuine loss-based flows) may be helped to switch back to delay-mode.