Abstract:
A cloud provider supports cloud-based services accessible to tenants of the cloud provider over a network. In the cloud provider, classification information including a cloud-identifier to identify the cloud provider, service-identifiers each to identify a respective one of the services, and tenant-identifiers each to identify a respective one of the tenants is maintained. The classification information is distributed within the cloud provider, including to the services, and may also be distributed outside of the cloud provider, to enable a respective tenant to exchange IP packets with, and thereby access, a respective service based on the classification information, wherein each IP packet includes the cloud-identifier, the service-identifier of the respective service, and the tenant-identifier of the respective tenant.
Abstract:
A cloud provider supports cloud-based services accessible to tenants of the cloud provider over a network. In the cloud provider, classification information including a cloud-identifier to identify the cloud provider, service-identifiers each to identify a respective one of the services, and tenant-identifiers each to identify a respective one of the tenants is maintained. The classification information is distributed within the cloud provider, including to the services, and may also be distributed outside of the cloud provider, to enable a respective tenant to exchange IP packets with, and thereby access, a respective service based on the classification information, wherein each IP packet includes the cloud-identifier, the service-identifier of the respective service, and the tenant-identifier of the respective tenant.
Abstract:
In one embodiment, a method includes estimating a current queuing latency, the estimated current queuing latency being associated with a queue of packets maintained in a buffer. The method also includes calculating a current drop or mark probability, the current drop or mark probability being associated with a probability that packets associated with the queue of packets will be dropped or marked. A rate at which the packets associated with the queue of packets are dequeued from the buffer is estimated in order to estimate the current queuing latency. The current drop or mark probability is calculated using the current estimated queuing latency.
Abstract:
In one embodiment, a method includes estimating a current queuing latency, the estimated current queuing latency being associated with a queue of packets maintained in a buffer. The method also includes calculating a current drop or mark probability, the current drop or mark probability being associated with a probability that packets associated with the queue of packets will be dropped or marked. A rate at which the packets associated with the queue of packets are dequeued from the buffer is estimated in order to estimate the current queuing latency. The current drop or mark probability is calculated using the current estimated queuing latency.