Abstract:
Presented herein are methods and compositions for the detection of specific beta-lactamases, including class A serine carbapenemases, metallo-beta-lactamases, AmpC beta-lactamases, and extended-spectrum beta-lactamases (ESBLs). The methods presented herein include methods that permit the detection of the presence of specific beta-lactamases in bacterial samples within as few as 2 to 10 minutes.
Abstract:
Presented herein are kits for the detection of specific beta-lactamases, including class A serine carbapenemases, metallo-beta-lactamases, AmpC beta-lactamases, and extended-spectrum beta-lactamases (ESBLs). The kits presented herein include kits that permit the detection of the presence of specific beta-lactamases in bacterial samples within as few as 2 to 10 minutes.
Abstract:
Presented herein are methods and compositions for the detection of specific beta-lactamases, including class A serine carbapenemases, metallo-beta-lactamases, AmpC beta-lactamases, and extended-spectrum beta-lactamases (ESBLs). The methods presented herein include methods that permit the detection of the presence of specific beta-lactamases in bacterial samples within as few as 2 to 10 minutes.
Abstract:
Presented herein are methods, compositions, and kits for the detection of specific beta-lactamases, including class A serine carbapenemases, metallo-beta-lactamases, AmpC beta-lactamases, and extended-spectrum beta-lactamases (ESBLs). The methods presented herein include methods that permit the detection of the presence of specific beta-lactamases in bacterial samples within as few as 2 to 10 minutes.
Abstract:
Presented herein are methods and compositions for the detection of specific beta-lactamases, including class A serine carbapenemases, metallo-beta-lactamases, AmpC beta-lactamases, and extended-spectrum beta-lactamases (ESBLs). The methods presented herein include methods that permit the detection of the presence of specific beta-lactamases in bacterial samples within as few as 2 to 10 minutes.
Abstract:
Presented herein are solid supports on or in which a composition comprising a lysis reagent and an intracellular microorganism target detection reagent (e.g., an intracellular bacterial target detection reagent) is present in a dried form. Presented herein are also methods for detecting the presence of an intracellular microorganism target (e.g., an intracellular bacterial target) utilizing such solid supports. Further, presented herein are tablets as well as dry powders comprising a lysis reagent and an intracellular microorganism target detection reagent (e.g., an intracellular bacterial target detection reagent), and methods of using such tablets and dry powders to detect the presence of an intracellular microorganism target (e.g., an intracellular bacterial target).
Abstract:
Presented herein are solid supports on or in which a composition comprising a lysis reagent and an intracellular microorganism target detection reagent (e.g., an intracellular bacterial target detection reagent) is present in a dried form. Presented herein are also methods for detecting the presence of an intracellular microorganism target (e.g., an intracellular bacterial target) utilizing such solid supports. Further, presented herein are tablets as well as dry powders comprising a lysis reagent and an intracellular microorganism target detection reagent (e.g., an intracellular bacterial target detection reagent), and methods of using such tablets and dry powders to detect the presence of an intracellular microorganism target (e.g., an intracellular bacterial target).
Abstract:
Presented herein are methods and compositions for the detection of specific beta-lactamases, including class A serine carbapenemases, metallo-beta-lactamases, AmpC beta-lactamases, and extended-spectrum beta-lactamases (ESBLs). The methods presented herein include methods that permit the detection of the presence of specific beta-lactamases in bacterial samples within as few as 2 to 10 minutes.
Abstract:
Presented herein are methods for the detection of specific beta-lactamases, including class A serine carbapenemases, metallo-beta-lactamases, AmpC beta-lactamases, and extended-spectrum beta-lactamases (ESBLs). The methods presented herein include methods that permit the detection of the presence of specific beta-lactamases in bacterial samples within as few as 2 to 10 minutes.
Abstract:
Presented herein are methods and compositions for the detection of specific beta-lactamases, including class A serine carbapenemases, metallo-beta-lactamases, AmpC beta-lactamases, and extended-spectrum beta-lactamases (ESBLs). The methods presented herein include methods that permit the detection of the presence of specific beta-lactamases in bacterial samples within as few as 2 to 10 minutes.