Abstract:
Activation modules for selectively sealing entrances to inner barrels of coring tools may include an activator body and an activation rod movable between a first position and a second position. A locking element may temporarily hold the activator body in place and a sealing element may form a temporary seal. The activation rod may include a locking portion, a releasing portion of a smaller diameter, a sealing portion, and an unsealing portion of a smaller diameter. The locking portion may be aligned with the locking element and the sealing portion may be aligned with the sealing element when the activation rod is in the first position. The releasing portion may be aligned with the locking element and the unsealing portion may be aligned with the sealing element when the activation rod is in the second position.
Abstract:
Core sample catchers for use with coring tools for obtaining core samples from subterranean formations may include at least one flap catcher member configured to be movably coupled to an inner barrel of the coring tool and configured to move between an open position and a closed position. A piston member including a central bore may be disposed in a passageway extending through the inner barrel. The piston member may be configured to move between a first position and a second position, the piston member configured to retain the at least one flap catcher member in the open position when the piston member is in the first position, and allow flap catcher member to move into the closed position when the piston member is in the second position.
Abstract:
Methods of compensating pressure differences between interiors and exteriors of inner barrels of coring tools may involve advancing a coring tool into a wellbore, the coring tool comprising an inner barrel for receiving a core sample cut by the coring tool, a first fluid being sealed within the inner barrel. A second fluid may flow along an exterior of the inner barrel. A pressure difference between the first fluid and the second fluid may be reduced. A volume occupied by the first fluid may be compressed by moving a compensating member. The volume occupied by the first fluid may be expanded by moving the compensating member.
Abstract:
Activation modules for selectively sealing entrances to inner barrels of coring tools may include an activator body and an activation rod movable between a first position and a second position. A locking element may temporarily hold the activator body in place and a sealing element may form a temporary seal. The activation rod may include a locking portion, a releasing portion of a smaller diameter, a sealing portion, and an unsealing portion of a smaller diameter. The locking portion may be aligned with the locking element and the sealing portion may be aligned with the sealing element when the activation rod is in the first position, The releasing portion may be aligned with the locking element and the unsealing portion may be aligned with the sealing element when the activation rod is in the second position.
Abstract:
A coring bit for extracting a sample of subterranean formation material from a well bore may include a bit body having a bit face and an inner surface defining a substantially cylindrical cavity of the bit body. A first portion of the inner surface may be configured to surround a core catcher. The coring bit may include a face discharge channel inlet formed in the inner surface of the bit body longitudinally at or above the first portion of the inner surface. The coring bit may also include a face discharge channel extending through the bit body from the face discharge channel inlet to the bit face. A tubular body having a core catcher may be disposed in the coring bit to form a coring tool. Methods of forming such bit bodies may include forming an inlet for a face discharge channel in the inner surface of the bit body at a location longitudinally at or above the first portion of the inner surface and forming a face discharge channel extending from the inlet to the bit face.
Abstract:
Coring tools configured to procure core samples of earth formations may include a coring bit comprising a cutting structure configured to cut a core sample and an outer barrel connected to the coring bit. The outer barrel may be configured to apply axial and rotational force to the coring bit. An inner barrel may be located within the outer barrel and may be configured to receive a core sample within the inner barrel. A sponge material may line an inner surface of the inner barrel and may be configured to absorb a fluid from the core sample. A stabilizer may be connected to the outer barrel. At least one blade of the stabilizer may be rotatable with respect to the outer barrel and may be configured to remain at least substantially rotationally stationary relative to the earth formation during coring.
Abstract:
A coring bit for use on a coring tool for extracting a sample of subterranean formation from a well bore includes a bit body having a cavity, wherein a throat portion of the cavity extends into the bit body from a face of the bit body. The coring bit includes a sleeve disposed within the cavity of the bit body, the sleeve configured to separate a face discharge channel and a throat discharge channel. The face discharge channel is located radially outward of the sleeve and the throat discharge channel is located radially inward of the sleeve. A method of repairing a such a coring includes removing the sleeve from the cavity of a bit body.
Abstract:
Core jam indicators for use with coring tools include a plug coupled with an inner barrel and configured to selectively close the entrance of the inner barrel. The plug has at least one fluid port extending through a wall of the plug between an interior and an exterior of the plug. The mandrel at least partially covers the at least one fluid port of the plug in an activated position and the at least one fluid port is at least partially uncovered by the mandrel in a deactivated position. The mandrel is coupled to the inner barrel. A piston force acting on the mandrel resulting from a pressure difference above and below the mandrel acts over an area smaller than a maximum transverse cross-sectional area of the inner barrel. Coring tools include such core jam indicators. Components are provided and assembled to form such core jam indicators.
Abstract:
A liner tube for a core barrel assembly includes a substantially cylindrical sleeve having an inner surface configured to be coupled to a layer of material that is configured to absorb or adsorb formation fluids or parts of formation fluids. At every longitudinal location of the sleeve with respect to a longitudinal axis of the sleeve, a transverse cross-section of a wall of the sleeve may include at least one gap extending radially through the entire wall of the sleeve, such that the at least one gap separates a portion of the sleeve wall on one circumferential side of the at least one gap from another portion of the sleeve wall on an opposite circumferential side of the at least one gap. The sleeve has flexibility in a circumferential direction greater than that of a sleeve without a gap extending radially through an entire wall of the sleeve at a transverse cross-section of the sleeve at every longitudinal location of the sleeve. The sleeve may include at least two circumferential segments in contact with an elastic element extending in a circumferential direction. Methods of forming a liner for a core barrel assembly, methods of building a coring tool with such a liner, and methods of coring a formation material are also disclosed.
Abstract:
Core jam indicators for use with coring tools include a plug coupled with an inner barrel and configured to selectively close the entrance of the inner barrel. The plug has at least one fluid port extending through a wall of the plug between an interior and an exterior of the plug. The mandrel at least partially covers the at least one fluid port of the plug in an activated position and the at least one fluid port is at least partially uncovered by the mandrel in a deactivated position. The mandrel is coupled to the inner barrel. A piston force acting on the mandrel resulting from a pressure difference above and below the mandrel acts over an area smaller than a maximum transverse cross-sectional area of the inner barrel. Coring tools include such core jam indicators. Components are provided and assembled to form such core jam indicators.