Abstract:
Systems and methods are provided to use of out-of-band (OOB) channels for the transport of network-synchronization signals and network control information. These OOB channels transport synchronization and control channels over low-frequency bands outside of the frequency bands used for the data channels. Locating expensive network-synchronization functions in the optical network unit (ONU) and sharing the derived synchronization signals among multiple downstream customer premises equipment (CPE) devices results in cost savings and provides a means for maintaining a continuous, end-to-end synchronization reference, even during periods when the data channels on the copper network segment are in an energy-efficiency mode (e.g., a low-power and/or sleep mode).
Abstract:
A system may distribute radio networking traffic from a base station to one or more radio units in a bi-directional link. The system may transport the radio networking traffic over a digital network. The system may include a front-haul unit coupled to the radio units and in communication with the base station. The front-haul unit may encapsulate access signals from the base station within digital transport streams for transport over the digital network. The front-haul unit may multicast digital transport transmission streams to multiple radio units in a virtual cell. The digital transport streams may contain combined received access signals from multiple service providers in a neutral-host configuration. The radio units may map encapsulate incoming radio signals for return transport to the front-haul unit and then on the base station. The front-haul unit may transport data over the network to support wireless local area network service at the radio units.
Abstract:
Systems and methods are provided to use of out-of-band (OOB) channels for the transport of network-synchronization signals and network control information. These OOB channels transport synchronization and control channels over low-frequency bands outside of the frequency bands used for the data channels. Locating expensive network-synchronization functions in the optical network unit (ONU) and sharing the derived synchronization signals among multiple downstream customer premises equipment (CPE) devices results in cost savings and provides a means for maintaining a continuous, end-to-end synchronization reference, even during periods when the data channels on the copper network segment are in an energy-efficiency mode (e.g., a low-power and/or sleep mode).
Abstract:
A system for providing a reduced common public radio interface (CPRI) framelet link includes one or more cellular towers, each cellular tower including one or more cellular antennas and coupled to a first short CPRI fiber link. An access subsystem is coupled to a baseband pool. The access subsystem is coupled to the first short CPRI fiber link via a first framelet block, and the first framelet block facilitates interfacing the first short CPRI fiber link to the access subsystem.