Abstract:
A system implementing switching diversity in a scalable radio frequency communication system includes a primary radio frequency integrated circuit (RFIC), a first secondary RFIC, and a second secondary RFIC. The first secondary RFIC is configured to receive a radio frequency (RF) signal from a device via antenna elements based on a first beam setting, and transmit the RF signal to the primary RFIC. The primary RFIC is configured to receive the RF signal; downconvert the RF signal to an intermediate frequency (IF) signal; transmit the IF signal to a baseband processor; receive, from the baseband processor, a control signal including a second beam setting; and transmit the control signal to the second secondary RFIC. The second secondary RFIC is configured to receive the control signal from the first primary RFIC, and receive the first RF signal from the device via second antenna elements based on the second beam setting.
Abstract:
A device implementing a distributed dynamic configuration of a scalable radio frequency communication system includes a primary radio frequency (RF) integrated circuit (RFIC) and at least one secondary RFIC. The primary RFIC includes at least one phase shifter, and the primary RFIC may be configured to apply a first phase shift to an RF signal using the at least one first phase shifter, and to transmit the RF signal to at least one secondary RFIC. The at least one secondary RFIC includes at least one second phase shifter, and the at least one secondary RFIC may be configured to apply a second phase shift to the RF signal using the at least one second phase shifter, and to transmit the RF signal via at least one antenna element. The first and second phase shifts may be received by the primary RFIC from a baseband processor.
Abstract:
A device implementing low latency packet forwarding may include at least one processor circuit. The at least one processor circuit may be configured to receive a packet, retrieve routing information from the packet prior to performing an integrity check on the packet, and prepare to transmit the packet based at least in part on the routing information. The routing information may be in the form of, for example, a tag, a label, or a segment, and the routing information may be retrieved from at least one of a preamble, a PHY header, or a MAC header. In the case of the preamble, the information retrieved may be used to both perform channel estimation and route the packet. In multiple-input and multiple-output (MIMO) and/or channel aggregation implementations, at least a portion of the preamble of each stream (or channel) can be combined to form the routing information.
Abstract:
A device implementing the subject scalable radio frequency communication system includes one or more primary radio frequency integrated circuits (RFICs) and at least one secondary RFIC. Each of the one or more primary RFICs is configured to receive an intermediate frequency (IF) signal from a baseband processor, upconvert the IF signal to a radio frequency (RF) signal, and transmit the RF signal to one or more secondary RFICs. The secondary RFICs under each of the one or more primary RFICs are configured to receive the RF signal from the corresponding primary RFIC, phase shift and amplify the RF signal, and transmit the RF signal via a plurality of antenna elements.
Abstract:
A method of compensating carrier tone generation between duty cycles includes receiving a carrier frequency signal and a reference frequency signal, where the carrier frequency signal is mixed with a communication signal in a signal path. The method includes determining a first and second time differences between the carrier frequency signal and the reference frequency signal at respective clock edges of the reference frequency signal. The method includes converting the first time difference to a first corresponding phase value and the second time difference to a second corresponding phase value based on an operating frequency, and determining a phase difference between the first corresponding phase value and the second corresponding phase value. In turn, the method includes adjusting the communication signal with the phase difference independent of the signal path to maintain phase continuity in the signal path between the duty cycles.