Abstract:
A thin film transistor and a manufacturing method thereof, an array substrate and a manufacturing method thereof, and a display panel are provided. The thin film transistor includes an active layer and a wire grid which is disposed at least on a surface of an active region of the active layer and is made of a conductive material. The active layer includes a source region, a drain region, and the channel region between the source region and the drain region. The wire grid includes a plurality of wire grid sections which are spaced apart from each other, and in a direction from the source region to the drain region, a length of the channel region is longer than a length of the wire grid section.
Abstract:
A fruit and vegetable sugar content detector is provided, which includes a measurement electrode unit including two measurement electrodes capable of being inserted into a to-be-detected fruit or vegetable, one end of one of the two measurement electrodes being connected to one end of the other one of the two measurement electrodes, a resistance detection circuit connected to the measurement electrode unit and configured to detect a resistance between the two measurement electrodes, and a processor connected to the resistance detection circuit and configured to determine, in accordance with the detected resistance between the two measurement electrodes, a sugar content of the to-be-detected fruit or vegetable, and generate sugar content indication information.
Abstract:
The present disclosure provides a magnetic resonance type wireless charging circuit, and belongs to the field of wireless charging technology. The magnetic resonance type wireless charging circuit comprises: a high frequency oscillation circuit configured to generate an initial oscillation signal; and a driving circuit configured to generate a transmission signal using the initial oscillation signal; wherein the driving circuit comprises one stage of driving sub-circuit or n stages of driving sub-circuits with (n−1) stages of Direct Current (DC) blocking circuits serially connected thereamong in an alternate manner, where n≥2 and n is an integer, and each stage of driving sub-circuit comprises a frequency doubling circuit and a first frequency selection circuit which are connected in series. In the present disclosure, the frequency of the initial oscillation signal generated by the high frequency oscillation circuit is doubled, so as to increase the frequency of the transmission signal and ensure a transmission distance of the transmission signal, thereby ensuring the effects of wireless charging. When the frequency of the transmission signal is required to reach a certain value, the requirements for switch transistors are reduced, and a wireless charging circuit with good effects can be achieved by using cheap switch transistors, thereby reducing production cost of the wireless charging circuit.
Abstract:
A wireless charging device and an electronic device are disclosed. The wireless charging device includes: a photoelectric conversion device and a primary light guide plate; the primary light guide plate having a first light incident surface and a first light exiting surface; and the photoelectric conversion device faces the first fight exiting surface.
Abstract:
A microprojection device and a magnetic suspension base are provided. The microprojection device comprises a microprojector and a main suspension magnet. The microprojector is fixed to the main suspension magnet. The magnetic field direction at a magnetic field center of the main suspension magnet is in the vertical direction so the microprojector can be driven to be suspended in a magnetic field environment. The magnetic suspension base comprises: a housing and at least three base magnets disposed therein. The magnetic field direction at the center of a combined magnetic field formed by the at least three base magnets is in the vertical direction; the magnetic intensity at the center of the combined magnetic field is less than the magnetic intensity near the base magnets; and the microprojector can be driven to be suspended under the magnetic field environment by being fixed on the magnet.
Abstract:
A microprojection device and a magnetic suspension base are provided. The microprojection device comprises a microprojector and a main suspension magnet. The microprojector is fixed to the main suspension magnet. The magnetic field direction at a magnetic field center of the main suspension magnet is in the vertical direction so the microprojector can be driven to be suspended in a magnetic field environment. The magnetic suspension base comprises: a housing and at least three base magnets disposed therein. The magnetic field direction at the center of a combined magnetic field formed by the at least three base magnets is in the vertical direction; the magnetic intensity at the center of the combined magnetic field is less than the magnetic intensity near the base magnets; and the microprojector can be driven to be suspended under the magnetic field environment by being fixed on the magnet.
Abstract:
The present disclosure provides device and method for measuring cervical vertebra movement. The device comprises a sensor unit, a computation unit, a storage unit and a determination unit. The sensor unit comprises at least one transmission part and at least one reception part. Either of the transmission part and the reception part moves along with user's head, the other fixes relative to user's body. The transmission part transmits detection signals and the reception part receives them. The computation unit computes, based on detection signals, distance changes in a distance between the transmitting and reception part before and after user's head moves. The storage unit stores a mapping table indicating relations between distance changes and movement angles of user's head. The determination unit inquires the mapping table based on distance changes to determine movement angles of user's head. The device is simple, easily operated and practicable.
Abstract:
An irradiation device comprises a light source, an optical switch element and an image recognition module communicatively connected to the optical switch element. In some embodiments, a contour of a target area is recognized by an image recognition module and is provided by the image recognition module to the optical switch element, and a contour of an irradiation area of the light source is controlled by the optical switch element to match with the contour of the target area according to the contour of the target area provided by the image recognition module. Thus, when skin diseases are treated using the irradiation device according to some embodiments of the present disclosure, the contour of the irradiation area of the light source coincides with the contour of the target area, thereby ensuring a therapeutic effect with respect to the target area while avoiding damages to skin in a healthy area.
Abstract:
A cleaning device, which includes a clean water tank, a water pump and a cleaning head. A water outlet of the clean water tank is connected with the water pump, and a water outlet of the water pump is connected with the cleaning head through an outlet pipe. The cleaning device further includes an outlet control switch and a one-way water hydraulic control valve. The outlet control switch is provided on the outlet pipe; a water inlet of the one-way water hydraulic control valve is connected with the outlet pipe, and a joint of the water inlet of the one-way water hydraulic control valve and the outlet pipe is disposed between the outlet control switch and the water pump; and a water outlet of the one-way water hydraulic control valve is communicated with a water inlet of the clean water tank.
Abstract:
An image acquisition device and an image processing method and system are provided. The image acquisition device includes a first dual-camera device and a second dual-camera device. The first dual-camera device includes a first camera and a third camera. The second dual-camera device includes the first camera and a second camera. The image acquisition device can acquire depth information of richer information content from more viewing angles and reduce the number of points that cannot be matched.