Abstract:
A battery pack power transfer adaptor and a battery pack system that includes a battery pack adaptor. The adaptor enables a battery pack to provide high level power transfers to a variety of devices and to receive high level power transfers from a variety of power sources. The adaptor includes a battery pack interface to enable the adaptor to mechanically and electrically connect to the battery pack. The adaptor is able to transfer power at a variety of levels dependent upon the device to which it is attached.
Abstract:
A system for identifying a type of a power tool, the system comprising: a power tool having an electric motor; and a usage attachment configured to couple to the power tool, the usage attachment having a vibration sensor that generates vibration data when the power tool vibrates, a memory that stores the vibration data generated by the vibration sensor, and an identification subsystem that receives the vibration data from the memory, and identifies the type of the power tool by comparing the received vibration data to predetermined vibration data of a known type of power tool.
Abstract:
A wall panel system including a first wall panel, the first panel including at least a first panel hook portion. The system also including a second wall panel having a different configuration than the first wall panel. The second panel includes at least a second panel hook portion and a third panel hook portion opposing the second panel hook portion. The first wall panel is configured to engage with the second wall panel to create a wall panel assembly.
Abstract:
This application relates to a system and method for wirelessly charging battery packs. More particularly, the application relates to a system and method for wirelessly charging battery packs stored in a container. In one implementation, the system includes a sealable storage box having a transmitter for transmitting RF power to at least one battery pack stored in the storage box.
Abstract:
A battery pack can include a temperature sensor that can provide an output that is indicative of a temperature associated with the battery pack. A battery management unit can directly measure the temperature sensor when the battery pack is by itself or engaged with a tool. A charger can directly read the temperature sensor when the battery pack is engaged with the charger. Thus, the temperature sensor can be shared by the battery pack and the charger. The battery pack can utilize a same terminal that provides access to the temperature sensor to indicate a stop-charge signal. The charger can read the stop-charge signal on the same terminal used to directly access the temperature sensor.
Abstract:
A battery pack can include a temperature sensor that can provide an output that is indicative of a temperature associated with the battery pack. A battery management unit can directly measure the temperature sensor when the battery pack is by itself or engaged with a tool. A charger can directly read the temperature sensor when the battery pack is engaged with the charger. Thus, the temperature sensor can be shared by the battery pack and the charger. The battery pack can utilize a same terminal that provides access to the temperature sensor to indicate a stop-charge signal. The charger can read the stop-charge signal on the same terminal used to directly access the temperature sensor.
Abstract:
A method is provided for controlling operation of a power tool, such as a drill driver. The method begins with one or more descriptors for a fastening application being received by a controller residing in the power tool, where the descriptors are indicative of a fastening application to be performed by the power tool and are received via a wireless data link from a computing device located remotely from the power tool. The descriptors are translated into a threshold value used by a fastener setting algorithm and the threshold value is stored in a data store of the power tool. During a subsequent fastening operation performed using the tool, an operating parameter of the power tool is monitored and evaluated in accordance with the fastener setting algorithm, including the updated threshold value. Example operating parameters include current delivered to the motor and speed of the motor.
Abstract:
A power tool is provided which accommodates interchangeable tool heads. The power tool includes: a tool body having a housing and an electric motor mounted within the housing, as well as a tool head that releasably attaches via a mechanical connection and an electrical connection to the tool body. The tool releasably connects to the output shaft of the electric motor when the tool head is attached to the tool body. A tool switch interposed between a power source for the electric motor and the electric motor is operable to supply power from the power source to the electric motor. A tool accessory switch interposed between the tool accessory and the power source for the electric motor is operable to supply power from the power source via the electrical connection to the tool accessory, thereby providing the tool operator independent control of the tool accessory.
Abstract:
It is common for a power tool system from a manufacturer to include a battery pack that is designed and configured to mate and operate with at least one power tool and a battery charger. However, as systems have evolved it has become desirable to provide a battery pack that is designed and configured to mate and operate with at least one power tool and a first battery charger but not a second battery charger. The present disclosure provides a battery pack including a housing, a terminal block, a plurality of terminals, and a mechanical lockout for allowing engagement with a power tool and a first battery charger while preventing engagement with a second battery charger.
Abstract:
A system for identifying a type of a power tool, the system comprising: a power tool having an electric motor; and a usage attachment configured to couple to the power tool, the usage attachment having a vibration sensor that generates vibration data when the power tool vibrates, a memory that stores the vibration data generated by the vibration sensor, and an identification subsystem that receives the vibration data from the memory, and identifies the type of the power tool by comparing the received vibration data to predetermined vibration data of a known type of power tool.