Abstract:
A specific embodiment of the present invention is a process for continuously producing a porous solid film of spacer-modified nano graphene platelets for supercapacitor electrode applications. This process comprises: (a) dissolving a precursor material in a solvent to form a precursor solution and dispersing multiple nano graphene platelets into the solution to form a suspension; (b) continuously delivering and forming the suspension into a layer of solid film composed of precursor material-coated graphene platelets overlapping one another, and removing the solvent from the solid film (e.g., analogous to a paper-making, mat-making, or web-making procedure); (c) continuously converting the precursor material into nodules bonded to surfaces of graphene platelets to form a porous solid film composed of spacer-modified graphene platelets; and (d) continuously collecting the porous solid film on a collector (e.g., a winding roller). The roll of porous solid film (mat, paper, or web) can then be cut into pieces for used as supercapacitor electrodes.
Abstract:
A specific embodiment of the present invention is a process for continuously producing a porous solid film of spacer-modified nano graphene platelets for supercapacitor electrode applications. This process comprises: (a) dissolving a precursor material in a solvent to form a precursor solution and dispersing multiple nano graphene platelets into the solution to form a suspension; (b) continuously delivering and forming the suspension into a layer of solid film composed of precursor material-coated graphene platelets overlapping one another, and removing the solvent from the solid film (e.g., analogous to a paper-making, mat-making, or web-making procedure); (c) continuously converting the precursor material into nodules bonded to surfaces of graphene platelets to form a porous solid film composed of spacer-modified graphene platelets; and (d) continuously collecting the porous solid film on a collector (e.g., a winding roller). The roll of porous solid film (mat, paper, or web) can then be cut into pieces for used as supercapacitor electrodes.
Abstract:
A surface-modified nano graphene platelet (NGP), comprising: (a) a nano graphene platelet having a thickness smaller than 10 nm; and (b) discrete, non-continuous, and non-metallic bumps or nodules bonded to a surface of the graphene platelet to serve as a spacer. When multiple surface-modified NGP sheets are stacked together to form an electrode, large numbers of electrolyte-accessible pores are formed, enabling the formation of large amounts of double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance.
Abstract:
A surface-modified nano graphene platelet (NGP), comprising: (a) a nano graphene platelet having a thickness smaller than 10 nm; and (b) discrete, non-continuous, and non-metallic bumps or nodules bonded to a surface of the graphene platelet to serve as a spacer. When multiple surface-modified NGP sheets are stacked together to form an electrode, large numbers of electrolyte-accessible pores are formed, enabling the formation of large amounts of double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance.
Abstract:
A spacer-modified nano graphene platelet electrode, comprising: (a) multiple nano graphene platelets or sheets having an average thickness smaller than 10 nm; and (b) discrete, non-metallic nano-scaled particles that are disposed between two graphene platelets or sheets to serve as a spacer. In such a spacer-modified graphene electrode, large amounts of electrolyte-accessible pores are formed, enabling the formation of large amounts of electric double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance.
Abstract:
A supercapacitor comprising a two electrodes, a porous separator disposed between the two electrodes, and an ionic liquid electrolyte in physical contact with the two electrodes, wherein at least one of the two electrodes comprises a meso-porous structure being formed of a plurality of nano graphene platelets and multiple pores having a pore size in the range of 2 nm and 25 nm, wherein the graphene platelets are not spacer-modified or surface-modified platelets. Preferably, the graphene platelets are curved, not flat-shaped. The pores are accessible to ionic liquid molecules, enabling the formation of large amounts of electric double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance and high energy density.
Abstract:
A spacer-modified nano graphene platelet electrode, comprising: (a) multiple nano graphene platelets or sheets having an average thickness smaller than 10 nm; and (b) discrete, non-metallic nano-scaled particles that are disposed between two graphene platelets or sheets to serve as a spacer. In such a spacer-modified graphene electrode, large amounts of electrolyte-accessible pores are formed, enabling the formation of large amounts of electric double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance.
Abstract:
A supercapacitor comprising a two electrodes, a porous separator disposed between the two electrodes, and an ionic liquid electrolyte in physical contact with the two electrodes, wherein at least one of the two electrodes comprises a meso-porous structure being formed of a plurality of nano graphene platelets and multiple pores having a pore size in the range of 2 nm and 25 nm, wherein the graphene platelets are not spacer-modified or surface-modified platelets. Preferably, the graphene platelets are curved, not flat-shaped. The pores are accessible to ionic liquid molecules, enabling the formation of large amounts of electric double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance and high energy density.
Abstract:
A flexible, asymmetric electrochemical cell comprising: (A) A sheet of graphene paper as first electrode comprising nano graphene platelets having a platelet thickness less than 1 nm, wherein the first electrode has electrolyte-accessible pores; (B) A thin-film or paper-like first separator and electrolyte; and (C) A thin-film or paper-like second electrode which is different in composition than the first electrode; wherein the separator is sandwiched between the first and second electrode to form a flexible laminate configuration. The asymmetric supercapacitor cells with different NGP-based electrodes exhibit an exceptionally high capacitance, specific energy, and stable and long cycle life.
Abstract:
A flexible, asymmetric electrochemical cell comprising: (A) A sheet of graphene paper as first electrode comprising nano graphene platelets having a platelet thickness less than 1 nm, wherein the first electrode has electrolyte-accessible pores; (B) A thin-film or paper-like first separator and electrolyte; and (C) A thin-film or paper-like second electrode which is different in composition than the first electrode; wherein the separator is sandwiched between the first and second electrode to form a flexible laminate configuration. The asymmetric supercapacitor cells with different NGP-based electrodes exhibit an exceptionally high capacitance, specific energy, and stable and long cycle life.