Abstract:
Techniques are disclosed relating to multiway communications. In some embodiments, a first electronic device initiates a multiway call between a plurality of electronic devices and exchanges a first secret with a first set of electronic devices participating during a first portion of the multiway call, the first secret being used to encrypt traffic between the first set of electronic devices. The first electronic device receives an indication that first set of participating electronic devices has changed and, in response to the indication, exchanges a second secret with a second set of electronic devices participating during a second portion of the multiway call, the second secret being used to encrypt traffic between the second set of participating electronic devices. In some embodiments, the indication identifies a second electronic device as leaving the multiway call, and the second secret is not exchanged with the second electronic device.
Abstract:
A device implementing a system for audio-video conferencing using multiple stream identifiers includes a processor configured to receive, from a sending device, indication of a first content stream and a first stream identifier, and indication of a second content stream and a second stream identifier associated. The first content stream and the second content stream correspond to different bit rates of streaming content. The processor is configured to receive, from a receiving device, a request to subscribe to the second content stream, the request including the second stream identifier, and receive, from the sending device, an indication that the second stream identifier has been associated with the first content stream. The processor is configured to forward, to the receiving device, the first content stream based on the request to subscribe to the second content stream and on the indication that the second stream identifier has been associated with the first content stream.
Abstract:
Techniques are disclosed relating to multiway communications. In some embodiments, a first electronic device initiates a multiway call between a plurality of electronic devices and exchanges a first secret with a first set of electronic devices participating during a first portion of the multiway call, the first secret being used to encrypt traffic between the first set of electronic devices. The first electronic device receives an indication that first set of participating electronic devices has changed and, in response to the indication, exchanges a second secret with a second set of electronic devices participating during a second portion of the multiway call, the second secret being used to encrypt traffic between the second set of participating electronic devices. In some embodiments, the indication identifies a second electronic device as leaving the multiway call, and the second secret is not exchanged with the second electronic device.
Abstract:
A device implementing a system for multiway audio-video conferencing includes a processor configured to receive, from a first device, indication of a first channel and a second channel for communicating content for an audio-video conference session. The first channel and the second channel correspond to different types of communication interfaces. The processor is further configured to receive, from the first device, a first request to subscribe to a first content stream for the audio-video conference session via the first channel, and to subscribe to a second content stream for the audio-video conference session via the second channel, and in response to receiving the first request, forward, to the first device, the first content stream via the first channel.
Abstract:
A device implementing a system for multiway audio-video conferencing includes a processor configured to receive, from a first device, indication of a first channel and a second channel for communicating content for an audio-video conference session. The first channel and the second channel correspond to different types of communication interfaces. The processor is further configured to receive, from the first device, a first request to subscribe to a first content stream for the audio-video conference session via the first channel, and to subscribe to a second content stream for the audio-video conference session via the second channel, and in response to receiving the first request, forward, to the first device, the first content stream via the first channel.
Abstract:
A device implementing a system for audio-video conferencing using multiple stream identifiers includes a processor configured to receive, from a sending device, indication of a first content stream and a first stream identifier, and indication of a second content stream and a second stream identifier associated. The first content stream and the second content stream correspond to different bit rates of streaming content. The processor is configured to receive, from a receiving device, a request to subscribe to the second content stream, the request including the second stream identifier, and receive, from the sending device, an indication that the second stream identifier has been associated with the first content stream. The processor is configured to forward, to the receiving device, the first content stream based on the request to subscribe to the second content stream and on the indication that the second stream identifier has been associated with the first content stream.
Abstract:
The embodiments set forth techniques for avoiding network connectivity stalls at a mobile computing device. In an idle state, a performance analyzer executing on the mobile computing device is configured to passively analyze high-level network connectivity information to detect any minor issues with the network connectivity being provided by a primary interface (e.g., WiFi). When minor issues are detected, the mobile computing device transitions into an alerted state, where high emphasis is placed on using the WiFi interface and low emphasis is placed on using a secondary interface (e.g., Cellular). In the alerted state, the mobile computing device actively analyzes low-level connectivity information to detect any major issues with the WiFi interface. When major issues are detected, the mobile computing device transitions into a fallback state, where high emphasis is placed on using the Cellular interface and low emphasis is placed on using the WiFi interface.
Abstract:
Embodiments are presented herein of apparatuses, systems, and methods for selecting a RAT and coalescing application data activities for transmission using the RAT. A plurality of applications may be executed by a UE. During execution, the UE may receive a request to perform communication from each of the plurality of applications. Each request may include a deadline for performing the communication. The UE may further determine a RAT for performing the plurality of communications and schedule the plurality of communications. Scheduling may include combining the plurality of communications to be performed at a scheduled time using the RAT. Accordingly, the plurality of communications may be performed at the scheduled time using the RAT based on said scheduling.