SYSTEMS AND METHODS FOR STRUCTURED STEM AND SUFFIX LANGUAGE MODELS
    1.
    发明申请
    SYSTEMS AND METHODS FOR STRUCTURED STEM AND SUFFIX LANGUAGE MODELS 有权
    结构化和语言模型的系统和方法

    公开(公告)号:US20160275941A1

    公开(公告)日:2016-09-22

    申请号:US14841047

    申请日:2015-08-31

    Applicant: Apple Inc.

    CPC classification number: G10L15/063 G06F3/023 G06F17/276 G10L15/197

    Abstract: Systems and methods are disclosed for predicting words using a structured stem and suffix n-gram language model. The systems and methods include determining, using a first n-gram word language model, a first probability of a stem based on a first portion of a previously-input word in the received input. Using a second n-gram language model, a second probability of a first suffix may be determined based at least on a second portion the previously-input word in the received input. Further, a third probability of a second suffix different from the first suffix may be determined using a third n-gram language model based at least on a third portion of the previously-input word in the received input. A fourth probability of a predicted word may be determined based on the first, second and third probabilities. One or more predicted words may be determined and provided as an output to the user.

    Abstract translation: 公开了用于使用结构化词干和后缀n-gram语言模型预测单词的系统和方法。 系统和方法包括基于接收的输入中的先前输入的单词的第一部分来确定使用第一n-gram语言模型的词干的第一概率。 使用第二n-gram语言模型,可以至少基于第二部分来确定接收到的输入中的先前输入的单词的第一后缀的第二概率。 此外,可以使用至少基于接收到的输入中的先前输入的单词的第三部分的第三n语言模型来确定与第一后缀不同的第二后缀的第三概率。 可以基于第一,第二和第三概率来确定预测字的第四概率。 可以确定一个或多个预测单词并将其提供给用户的输出。

    PARSIMONIOUS HANDLING OF WORD INFLECTION VIA CATEGORICAL STEM + SUFFIX N-GRAM LANGUAGE MODELS
    2.
    发明申请
    PARSIMONIOUS HANDLING OF WORD INFLECTION VIA CATEGORICAL STEM + SUFFIX N-GRAM LANGUAGE MODELS 有权
    通过分类STEM + SUFFIX N-GRAM语言模型进行词汇传播的区别处理

    公开(公告)号:US20160093301A1

    公开(公告)日:2016-03-31

    申请号:US14839806

    申请日:2015-08-28

    Applicant: APPLE INC.

    CPC classification number: G06F17/276 G10L15/197

    Abstract: Systems and processes are disclosed for predicting words using a categorical stem and suffix word n-gram language model. A word prediction includes determining a stem probability using a stem language model. The word prediction also includes determining a suffix probability using suffix language model decoupled from the stem model, in view of one or more stem categories. The word prediction also includes determine a probability of the stem belonging to the stem category. A joint probability is determined based on the foregoing, and one or more word predictions having sufficient likelihood. In this way, the categorical stem and suffix language model constraints predicted suffixes to those that would be grammatically valid with predicted stems, thereby producing word predictions with grammatically valid stem and suffix combinations.

    Abstract translation: 公开了用于使用分类词干和后缀词n-gram语言模型预测单词的系统和过程。 词预测包括使用茎语言模型来确定茎概率。 词预测还包括根据一个或多个词干类别来确定使用从茎模型解耦的后缀语言模型的后缀概率。 词预测还包括确定属于茎类别的茎的概率。 基于上述确定联合概率,并且具有足够可能性的一个或多个单词预测。 以这种方式,分类茎和后缀语言模型约束预测了与语法上有效的预测词干的后缀,从而产生具有语法有效的词干和后缀组合的词预测。

Patent Agency Ranking