Abstract:
Disclosed embodiments include wearable devices and techniques for detecting cardio machine activities, estimating user direction of travel, and monitoring performance during cardio machine activities. By accurately and promptly detecting cardio machine activities and automatically distinguishing between activities performed on different types of cardio machines, the disclosure enables wearable devices to accurately calculate user performance information when users forget to start and/or stop recording activities on a wide variety of cardio machines. In various embodiments, cardio machine activity detection techniques may use magnetic field data from a magnetic field sensor to improve the accuracy of orientation data and device heading measurements used to detect the end of a cardio machine activity.
Abstract:
Systems and methods are disclosed for tracking physiological states and parameters for calorie estimation. A start of an exercise session associated with a user of a wearable computing device is determined. Heart rate data is measured for a first period of time. An onset heart rate value of the user is determined based on the measured heart rate data, the onset heart rate value associated with a lowest valid heart rate measured during the first period of time. A resting heart rate parameter (RHR) of a calorimetry model is associated with at least one of the onset heart rate value, a preset RHR, and an RHR based on user biometric data. Energy expenditure of the user during a second period of time is estimated based on the calorimetry model and a plurality of heart rate measurements obtained by the wearable computing device during the second period of time.
Abstract:
Disclosed embodiments include wearable devices and techniques for detecting the end of hiking activities. By accurately and promptly detecting the end of hiking activities automatically, the disclosure enables wearable devices to accurately calculate user performance information when users forget to start and/or stop recording a hiking activity.
Abstract:
In one aspect, the present disclosure relates to a method including obtaining, by at least one sensor of a fitness tracking device, motion data of a user of the fitness tracking device; separating, by the fitness tracking device, the motion data into at least a first frequency signature attributable to movement by the user and a second frequency signature attributable to a type of a terrain on which the user is moving; determining, by the fitness tracking device, the type of the terrain on which the user is moving by analyzing the first frequency signature and the second frequency signature; and estimating, by the fitness tracking device, a rate of energy expenditure of the user by applying a calorimetry model including a coefficient or a parameter associated with the type of the terrain.
Abstract:
Disclosed embodiments include wearable devices and techniques for detecting walking workouts. By accurately and promptly detecting the start of walking workouts activities and automatically distinguishing between walking workout and causal walking activities, the disclosure enables wearable devices to accurately calculate user performance information when users forget to start and/or stop recording walking workouts.
Abstract:
Systems and methods of analyzing a user's motion during a swimming session are described. One or more motions sensors can collect motion data of the user. A processor circuit can make motion analysis based on the motion data. The processor circuit can determine if the user's arm swing is a genuine swim stroke. The processor circuit can also determine whether the user is swimming or turning. The processor circuit can also classify the user's swim stroke style. The processor circuit can also determine the user's swim stroke phase. The processor circuit can also determine the user's stroke orbit consistency.
Abstract:
In one aspect, the present disclosure relates to a method including obtaining, by a heart rate sensor of a fitness tracking device, a heart rate measurement of a user of the fitness tracking device; obtaining, by at least one motion sensor, motion data of the user; analyzing, by the fitness tracking device, the motion data of the user to estimate a step rate of the user; estimating, by the fitness tracking device, a load associated with a physical activity of the user by comparing the heart rate measurement with the step rate of the user; and estimating, by the fitness tracking device, an energy expenditure rate of the user using the load and at least one of the heart rate measurement and the step rate.
Abstract:
A method and a system for determining an energy expenditure of a user by detecting unmeasurable loads using heart rate and work rate are described. Time-stamped heart rate data and work rate data can be collected by one or more sensing modules. A processor circuit can calculate a heart rate-based energy expenditure and a work rate-based energy expenditure. The processor circuit can output a hybrid energy expenditure based on a heart rate confidence parameter, an exercise type, a fraction of heart rate reserve, and a hear rate-based metabolic equivalents of task.
Abstract:
A method for performing continuous calibration of a magnetometer in a device includes during operation of a device, continually performing magnetometer measurements; continuously determining a state of the device; determining a magnetometer calibration model based on the magnetometer measurements and the state of the device; continually evaluating an accuracy of the magnetometer calibration model based the magnetometer measurements and the state of the device; and updating the magnetometer calibration model based on the evaluation of the accuracy magnetometer calibration model, the magnetometer measurements, and the state of the device.
Abstract:
Improved techniques and systems are disclosed for determining the components of resistance experienced by a wearer of a wearable device engaged in an activity such as bicycling or running. By monitoring data using the wearable device, improved estimates can be derived for various factors contributing to the resistance experienced by the user in the course of the activity. Using these improved estimates, data sampling rates may be reduced for some or all of the monitored data.