Abstract:
The embodiments discussed herein relate to systems, methods, and apparatus for synchronizing a pulse width modulation (PWM) dimming clock signal with a frame rate signal, line sync signal, and/or a horizontal sync signal of a display device. The PWM dimming clock signal can be generated by a synchronization block having a programmable offset/delay. The programmable offset/delay can control the offset or phase difference between an input and an output clock signal of the synchronization block. Depending on the clock rate of PWM dimming and/or panel resolution, the phase/offset delay can be adjusted to achieve the optimum front of screen performance. Additionally, an input clock generator/missing pulse detection block can output a programmed clock signal to the synchronization block in case of a missing external clock, or insert a pulse when there is a missing pulse detected, thereby providing an un-interrupted input clock signal to the PWM generator.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry may operate a light-emitting diode using a multi-peak pulse-width-modulation signal. The control circuitry may include a multi-stage driver having a relatively larger driver stage for providing a direct current through a light-emitting diode and a relatively smaller driver stage configured to cooperate with a pulse-width-modulation controller to pulse-width-modulate a current through the light-emitting diode.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry may include a feedforward loop and a feedback loop for a power supply for the light-emitting diodes. The light-emitting diodes may be arranged in strings that are individually controllable by a current control transistor on the string. The feedforward loop may determine a total upcoming load current for the power supply based on reference voltages for controlling each of the current control transistors. The output of the power supply may be modified based on a combination of a current from the feedforward loop and a current from the feedback loop.
Abstract:
Aspects of the subject technology relate to display circuitry such as backlight control circuitry for operating light-emitting diodes (LEDs). The backlight control circuitry may include a pulse-width-modulation (PWM) transistor and a current regulation transistor coupled in series with at least one LED. The current regulation transistor may have a gate terminal that receives a feedback-controlled gate voltage. The backlight control circuitry may include a gate clamp circuit coupled to the gate terminal of the current regulation transistor that clamps the gate voltage during a portion of a PWM on pulse.
Abstract:
This application relates to a dynamic lighting circuit for a keyboard of a computing device. The lighting circuit described herein includes several light emitting diode (LED) drivers having multiple channels for controlling multiple LEDs. The lighting circuit also includes an electrically erasable read-only memory (EEPROM) for storing configuration data for the LED drivers. Each LED is configured to individually illuminate a single key of the keyboard, allowing the lighting circuit to modify the brightness of each key without affecting the brightness of other keys. In this way, more lighting schemes are available for the keyboard, while also providing a thinner mechanical design for the keyboard. Lighting schemes can include illuminating a group or groups of keys at a different brightness level than other keys that are not contained in the group. Additionally, lighting schemes can include animations executed by varying the brightness levels of keys over a period of time.
Abstract:
The embodiments discussed herein relate to systems, methods, and apparatus for executing a pulse frequency modulation (PFM) mode of a boost converter in order to ensure that a switching frequency of the boost converter is a above an audible frequency threshold. In this way, a user operating a display device that is controlled by the boost converter will not be disturbed by audible noises generated at the display device. The PFM mode enforces an audible frequency threshold by using control circuitry designed to increase or decrease the frequency of a pulse signal depending on how the frequency of the pulse signal changes over time. The control circuitry can apply an additional load to the boost converter in order to increase the frequency of the pulse signal when the frequency is approaching the audible frequency threshold.
Abstract:
Aspects of the subject technology relate to display of an electronic device. The display includes a backlight unit having a voltage source, a string of light-emitting diodes and a bypass switch for each light-emitting diode in the string. The string of light-emitting diodes can receive, at a first end, a supply voltage from the voltage source. The bypass switch for each light-emitting diode is controllable to pulse-width-modulate that light-emitting diode. The headroom voltage feedback circuit is coupled to a second end of the string.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry includes a two-dimensional light-emitting diode (LED) array. The control circuitry may include a single LED array operable by a common driver or multiple LED arrays each operable by a dedicated LED matrix driver. Each matrix driver may receive a synchronization signal from a common controller and may include a programmable phase lock loop (PLL) to synchronize each matrix driver to the synchronization signal. The LED array may include multiple strings of LEDs mounted in series along the string. Each LED in each string may include a bypass switch operable to modify the current through that LED by pulse-width modulation.
Abstract:
Aspects of the subject technology relate to display circuitry such as backlight control circuitry for operating parallel strings of light-emitting diodes (LEDs). A voltage supply circuit of the backlight control circuitry provides a common supply voltage to the strings of LEDs. Headroom control circuitry samples a residual voltage at the end of each string, determines a minimum of the residual voltages, and provides feedback, based on the determined minimum voltage, to the voltage supply circuit. A headroom control feedback loop may be provided including sampling lines coupled to the second end of each string of LEDs for sampling a residual voltage of each string. Headroom control circuitry may modify the supply voltage based on the minimum residual voltage. Sample-and-hold circuitry may be provided that holds the sampled residual voltages until the voltage supply circuit is ready for an update.
Abstract:
Acoustic touch and/or force sensing system architectures and methods for acoustic touch and/or force sensing can be used to detect a position of an object touching a surface and an amount of force applied to the surface by the object. The position and/or an applied force can be determined using time-of-flight (TOF) techniques, for example. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a deformable material. The location of the object and the applied force can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water.