Radar apparatus using neural network for azimuth and elevation detection
    1.
    发明授权
    Radar apparatus using neural network for azimuth and elevation detection 失效
    雷达装置使用神经网络进行方位角和仰角检测

    公开(公告)号:US5345539A

    公开(公告)日:1994-09-06

    申请号:US961711

    申请日:1993-01-12

    Applicant: Andrew R. Webb

    Inventor: Andrew R. Webb

    CPC classification number: G01S7/417 G01S13/89 G06N3/02

    Abstract: Radar apparatus used for point-source location, where an adaptive feed forward artificial neural network is used to calculate a position vector from image information provided by radar receiving element outputs. Where an object is sensed within a field of view of a multiple output radar, then the radar receiving sensor element outputs are processed inputs as image vectors for use in input nodes of an input node layer of the artificial neural network. Typically the neural network has the same number of input nodes as the number of sensor element outputs an array within the radar receiver. Increased accuracy of point-source location can be achieved by increasing the number of hidden layers used, and/or increasing the number of nodes within each hidden layer. Training of the artificial neural network is described for (5.times.1), (1.times.5) and (4.times.4) radar receiving arrays, and also for idealised and noisy data.

    Abstract translation: PCT No.PCT / GB91 / 01894 Sec。 371日期:1993年1月12日 102(e)日期1993年1月12日PCT 1991年10月30日PCT PCT。 公开号WO92 / 08149 日期:1992年5月14日。用于点源位置的雷达装置,其中使用自适应前馈人造神经网络来从雷达接收元件输出提供的图像信息计算位置矢量。 在多输出雷达的视野内感测物体的情况下,雷达接收传感器元件输出是用作人造神经网络的输入节点层的输入节点中的图像矢量的处理输入。 通常,神经网络具有与传感器元件的数量输出雷达接收器内的阵列相同数量的输入节点。 通过增加所使用的隐藏层的数量和/或增加每个隐藏层内的节点数量,可以提高点源位置的准确性。 描述了(5x1),(1x5)和(4x4)雷达接收阵列的人造神经网络的训练,以及理想化和噪声数据。

Patent Agency Ranking