Abstract:
Technologies are described herein for managing the activation of software containers, for throttling of requests directed to tenants executing in a software container, and for priming the execution of software containers. The activation of software containers and tenants may be managed by maintaining an activation queue for storing requests to activate software containers or tenants on a host computer. Requests may be retrieved from the queue and utilized to determine whether a software container or a tenant is to be activated on a host. “Bounce” or hot swap tenant activations may be performed. Tenant activation requests might also be throttled by denying the requests or by postponing the requests until a later time. A software container might also be configured to throttle incoming requests to tenants executing therein. The execution of a software container might also be primed by replaying previously recorded network traffic to the software container.
Abstract:
A classloader executing in an execution environment, such as a JAVA virtual machine or a software container, may be configured to generate class usage data describing the historical usage of classes by applications in the execution environment. Based upon the class usage data, one or more classes may be pre-loaded into a cache prior to receiving a request from an application to load the classes. If an application subsequently requests a class, the request may be satisfied using the class stored in the cache rather than by loading the class at the time the request is received. A probabilistic data structure, such as a Bloom filter, might also be utilized to determine whether a classloader can possibly load a requested class. Only if the classloader can possibly load the requested class will a search be made for the requested class in a classpath associated with the classloader.
Abstract:
Mechanisms for resource isolation allow tenants executing in a multi-tenant software container to be isolated in order to prevent resource starvation by one or more of the tenants. Mechanisms for dependency isolation may be utilized to prevent one tenant executing in a multi-tenant software container from using another tenant in the same container in a manner that requires co-tenancy. Mechanisms for security isolation may be utilized to prevent one tenant in a multi-tenant software container from accessing protected data or functionality of another tenant. Mechanisms for fault isolation may be utilized to prevent tenants in a multi-tenant software container from causing faults or other types of errors that affect other tenants executing in the same software container.
Abstract:
Technologies are described herein for isolating tenants executing in a multi-tenant software container. Mechanisms for resource isolation allow tenants executing in a multi-tenant software container to be isolated in order to prevent resource starvation by one or more of the tenants. Mechanisms for dependency isolation may be utilized to prevent one tenant executing in a multi-tenant software container from using another tenant in the same container in a manner that requires co-tenancy. Mechanisms for security isolation may be utilized to prevent one tenant in a multi-tenant software container from accessing protected data or functionality of another tenant. Mechanisms for fault isolation may be utilized to prevent tenants in a multi-tenant software container from causing faults or other types of errors that affect other tenants executing in the same software container.
Abstract:
Technologies are described herein for isolating tenants executing in a multi-tenant software container. Mechanisms for resource isolation allow tenants executing in a multi-tenant software container to be isolated in order to prevent resource starvation by one or more of the tenants. Mechanisms for dependency isolation may be utilized to prevent one tenant executing in a multi-tenant software container from using another tenant in the same container in a manner that requires co-tenancy. Mechanisms for security isolation may be utilized to prevent one tenant in a multi-tenant software container from accessing protected data or functionality of another tenant. Mechanisms for fault isolation may be utilized to prevent tenants in a multi-tenant software container from causing faults or other types of errors that affect other tenants executing in the same software container.
Abstract:
Technologies are described herein for isolating tenants executing in a multi-tenant software container. Mechanisms for resource isolation allow tenants executing in a multi-tenant software container to be isolated in order to prevent resource starvation by one or more of the tenants. Mechanisms for dependency isolation may be utilized to prevent one tenant executing in a multi-tenant software container from using another tenant in the same container in a manner that requires co-tenancy. Mechanisms for security isolation may be utilized to prevent one tenant in a multi-tenant software container from accessing protected data or functionality of another tenant. Mechanisms for fault isolation may be utilized to prevent tenants in a multi-tenant software container from causing faults or other types of errors that affect other tenants executing in the same software container.
Abstract:
A classloader executing in an execution environment, such as a JAVA virtual machine or a software container, may be configured to generate class usage data describing the historical usage of classes by applications in the execution environment. Based upon the class usage data, one or more classes may be pre-loaded into a cache prior to receiving a request from an application to load the classes. If an application subsequently requests a class, the request may be satisfied using the class stored in the cache rather than by loading the class at the time the request is received. A probabilistic data structure, such as a Bloom filter, might also be utilized to determine whether a classloader can possibly load a requested class. Only if the classloader can possibly load the requested class will a search be made for the requested class in a classpath associated with the classloader.
Abstract:
Technologies are described herein for isolating tenants executing in a multi-tenant software container. Mechanisms for resource isolation allow tenants executing in a multi-tenant software container to be isolated in order to prevent resource starvation by one or more of the tenants. Mechanisms for dependency isolation may be utilized to prevent one tenant executing in a multi-tenant software container from using another tenant in the same container in a manner that requires co-tenancy. Mechanisms for security isolation may be utilized to prevent one tenant in a multi-tenant software container from accessing protected data or functionality of another tenant. Mechanisms for fault isolation may be utilized to prevent tenants in a multi-tenant software container from causing faults or other types of errors that affect other tenants executing in the same software container.
Abstract:
A classloader executing in an execution environment, such as a JAVA virtual machine or a software container, may be configured to generate class usage data describing the historical usage of classes by applications in the execution environment. Based upon the class usage data, one or more classes may be pre-loaded into a cache prior to receiving a request from an application to load the classes. If an application subsequently requests a class, the request may be satisfied using the class stored in the cache rather than by loading the class at the time the request is received. A probabilistic data structure, such as a Bloom filter, might also be utilized to determine whether a classloader can possibly load a requested class. Only if the classloader can possibly load the requested class will a search be made for the requested class in a classpath associated with the classloader.